
DRAFT Secureum CARE Report
Increment

March 2022

CARE: Why
CARE stands for "Comprehensive Audit Readiness Evaluation." CARE is not a replacement
for a security audit, but is intended to happen before an audit so that protocol code becomes
ready for future audit(s) to get a better security outcome from the process.

CARE reviews protocol code mainly for common security pitfalls and best-practices as
related to smart contracts written in Solidity specifically for Ethereum blockchain or
associated Layer-2 protocols. The pitfalls & best-practices are evaluated from (but not
limited to) Secureum’s Security Pitfalls & Best Practices 101 and 201.

CARE aims to help identify such common pitfalls & best-practices so that they can be fixed
before audit(s). This improves protocol's risk posture earlier in the design & development
lifecycle and enables future audit(s) to focus more on deeper/harder application-specific and
economic vulnerabilities. CARE helps smart contract security "shift-left" which is widely
regarded as significantly improving security posture and outcome.

CARE reviews are performed by "CAREtakers" which includes a Secureum representative
(who has a proven track-record of smart contract security expertise/experience) along with
invited participants who are top-performing members of the Secureum community and
aspiring smart contract security experts. They are invited based on their performance in
Secureum RACEs.

CARE: When, Who & What

Dates: 31st March - 6th April, 2022

CAREtakers (Discord handles): blockdev#0246, neumo#7347, teryanarmen#2961,
@Ðravee, @yash90, @Kenshin, @Bahurum, Deivitto#9076, @tin537, @popular,
baraa#7157 & @Rajeev | Secureum

Scope: Review focused on this repository/commit:
https://github.com/Increment-Finance/increment-secureum and some immediately related
dependencies.

Note: If there were changes/commits after that across repositories, some of them may have
been used in Github Permalinks below but not necessarily reviewed.

http://l2beat.com
https://secureum.substack.com/p/security-pitfalls-and-best-practices-101
https://secureum.substack.com/p/security-pitfalls-and-best-practices-201
https://github.com/Increment-Finance/increment-secureum

CARE-X Security Pitfalls & Best-Practices: Checklist

1. Single-step/direct transfer of ownership is risky
a. Summary: Single-step change of ownership of contracts is risky.
b. Details: Vault.sol, Insurance.sol, and ClearingHouse.sol inherit

from IncreOwnable.sol which implements the transferOwner function.
Although this function does have a two-step change option, it also has a
single-step change option. When the parameter direct is passed a value
true, the ownership will be transferred directly. There is a possibility that
direct transfer of ownership is done accidentally and to an incorrect address.

c. Github Permalinks: transferOwner
d. Mitigation: Re-consider the utility of direct transfer of ownership when a

two-step change mechanism is also there in the transferOwner function.
2. Mixing of (unused) named and explicit returns affects readability

a. Summary: Mixing of named and explicit returns affects readability and is
especially confusing when named returns are unused.

b. Details:
i. in ClearingHouseViewer.sol, getFundingPayments function

has both named and explicit returns. This reduces code readability.
ii. In Perpetual.sol, several functions have both named returns and

an explicit return statement, which is redundant.
c. Github Permalinks:

i. getFundingPayments
ii. extendPosition, reducePosition, provideLiquidity,

settleLiquidityProvider, marketPrice,
getFundingPayments, _settleFundingRate,
_settleLpFundingRate, _checkProposedAmount,
_getPositionDirection

d. Mitigation: Reconsider the use of named returns and instead use explicit
return statements with values to increase readability

3. No way to remove or pause a Perpetual Market
a. Summary: Once a perpetual market is allowlisted, it cannot be removed.
b. Details: A perpetual market has to be allowlisted by ClearingHouse

owner. allowListPerpetual which pushes the perpetual in
perpetuals array. After that, there is no way to pause a specific perpetual
or remove it. The only possible mitigation, if a vulnerability is discovered in a
specific perpetual, is to pause the entire protocol.

c. Github Permalinks: allowListPerpetual
d. Mitigation: Consider adding functionality to remove/pause a specific

perpetual.
4. Code, comments, and documentation

a. Summary: Discrepancies in/between or inaccuracies/deficiencies in code,
comment, and documentation can be misleading and could indicate the
presence of inaccurate implementation or documentation.

b. Details:

https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/utils/IncreOwnable.sol#L37
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouseViewer.sol#L91-L93
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L126
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L207
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L286
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L403
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L480
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L509
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L717
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L738
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L826
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L911
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouse.sol#L402

i. Threshold value mismatch between documentation and code.
Documentation mentions that for any action by a trader or liquidity
provider, the maximum accepted price deviation is 2%, but code
checks for a 5% price deviation. Update the documentation or change
MAX_PRICE_DEVIATION to 2e16.

ii. Incorrect Natspec comment for reducePosition.
reducePosition allows traders to reduce or close their position, but
the comment only mentions closing the position. Update the comment
to: “Reduces/Closes position from account holder.”

iii. NatSpec comments for extendPositionWithCollateral do not
describe return values.

iv. NatSpec comments are absent for getUnrealizedPnL.
v. Missing NatSpec @param for getLpBalance user.

vi. NatSpec comments for getProposedAmount do not describe return
value.

c. Github Permalinks:
i. MAX_PRICE_DEVIATION, Documentation
ii. reducePosition
iii. extendPositionWithCollateral
iv. getUnrealizedPnL
v. getLpBalance

vi. getProposedAmount
d. Mitigation: Code, comments, and documentation should all be accurate and

consistent.
5. Maximum comment line length exceeded

a. Summary: Long comments should be wrapped to conform with Solidity Style
guidelines.

b. Details: Lines 42, 52, 358, 366, 419, 420, 597 and some other lines in
ClearingHouse.sol; Line 44 in ClearingHouseViewer.sol; Line
203 Perpetual.sol; Line 261 in Vault.sol; exceed the 79 (or 99)
character length suggested by the Solidity Style guidelines.

c. Github Permalinks: ClearingHouse, ClearingHouseViewer,
Perpetual.sol, Vault.sol

d. Mitigation: Lines mentioned should be wrapped to a maximum of 79 (or 99)
characters to help readers easily parse the comments.

6. Division by zero
a. Summary: In Perpetual.sol there is a potential division by zero that could

revert without a reason.
b. Details: In Perpetual.sol function

_getVBasePositionAfterVirtualWithdrawal does not check
getTotalLiquidityProvided() value before division. This could lead to
a division by zero revert without returning a descriptive message to the user.

c. Github permalinks: _getVBasePositionAfterVirtualWithdrawal
d. Mitigation: Add require(getTotalLiquidityProvided() > 0,

“Division by zero”)
7. Potential miscalculation of funding payments

https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L31
https://increment-team.gitbook.io/developer-docs/guides/trader-interactions#action-1-opening-a-position
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L200
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouse.sol#L174
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L517
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L252
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouseViewer.sol#L153
https://docs.soliditylang.org/en/v0.8.10/style-guide.html#order-of-functions
https://github.com/porter-finance/v1-core/blob/CAREX/contracts/Bond.sol#L42
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouseViewer.sol#44
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L203
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#261
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L928-L931

a. Summary: The calculation of funding payments in Perpetual.sol may be
incorrect.

b. Details: In Perpetual.sol the first parameter of the calls to
_getFundingPayments is calculated with three different methods. The
parameter, isLong, is mostly assigned the result of the call to
_getPositionDirection, but in one case it is assigned true if the call to
_getVBasePositionAfterVirtualWithdrawal is greater than zero
and false otherwise, and in other case it is assigned true if
user.positionSize is greater than zero and false otherwise. Both
functions take the user position struct as their only parameter. It could happen
that, if user.liquidityBalance is zero and user.positionSize is
one, the call to _getPositionDirection would return true (so isLong =
true), but the call to _getVBasePositionAfterVirtualWithdrawal
would return zero, so isLong would be false. The call to
_getFundingPayments using the value of user.positionSize could
also imply a different value for isLong, because using
_getPositionDirection or
_getVBasePositionAfterVirtualWithdrawal could both return
different values for isLong, because they not only take into account the
positionSize but also the liquidityBalance of the user.

c. Github permalinks:
i. _getPositionDirection
ii. _getVBasePositionAfterVirtualWithdrawal
iii. Call to _getFundingPayments using _getPositionDirection

to calculate isLong
iv. Call to _getFundingPayments using

_getVBasePositionAfterVirtualWithdrawal to calculate
isLong

v. Call to _getFundingPayments using user.positionSize
greater than zero to calculate isLong

d. Mitigation: Ensure that for a given UserPosition struct, the direction
calculated is always the same (it shouldn’t be Short or Long depending on the
method used to calculate it). Consider using virtualPositionSize
instead of positionSize as appropriate.

8. Public function visibility can be made external
a. Summary: Functions should have the strictest visibility possible. Public

functions may lead to more gas usage by forcing the copy of their parameters
to memory from calldata.

b. Details: If a public function is never called from the contract it should be
marked as external. This will save gas.

c. Github permalinks: approve and transfer
d. Mitigation: Change visibility from public to external.

9. Redundant parameter
a. Summary: Use of deposit and withdraw token parameters may be

redundant.

https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L911-L919
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L921-L932
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L298-L305
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L298-L305
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L738-L753
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L738-L753
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L738-L753
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L725-L730
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L725-L730
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/BaseERC20.sol#L45
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/BaseERC20.sol#L53

b. Details: depositToken and withdrawToken parameters in deposit,
withdraw, withdrawAll and withdrawPartial functions in Vault are
redundant because they can only be equal to reserveToken which is
already stored in the contract.

c. Github Permalinks: deposit, withdraw
d. Mitigation: Consider removing this parameter to simply use reserveToken

instead.
10. Missing check for special indices

a. Summary: Missing check for special indices 0 or 1 may allow users to
accidentally have their tokens locked.

b. Details: Indices 0 and 1 of traderBalances have a special meaning in the
Vault code where they are used to track insurance reserves of the protocol
and profit earned by governance from selling dust respectively. However
functions in ClearingHouse allow users to call them with these special
indices 0 or 1 which are irrelevant to addresses other than clearingHouse.
This can allow users to accidentally call these functions with the special
indices leading to their tokens getting locked in the protocol.

c. Github Permalinks: Comment
d. Mitigation: Consider adding a check such as require(idx > 1)

wherever necessary to prevent users from calling functions with these special
indices 0 or 1.

11. Test code in production
a. Summary: Contracts import Hardhat console.sol library in production.
b. Details: Testing related code should be removed from production. Contracts

import Hardhat console.sol library that is used for testing which should be
removed before production deployment.

c. Github Permalinks: ClearingHouse.sol#L23, Perpetual.sol#L19,
Vault.sol#L20

d. Mitigation: Remove imports of Hardhat console.sol before production
deployment.

12. Custom Errors can be used
a. Summary: Given the use of Solidity version 0.8.4, custom errors can be

used.
b. Details: Solidity v0.8.4 introduced a convenient and gas-efficient way to

explain to users why an operation failed through the use of custom errors.
They provide an alternative to using revert strings which can be gas
expensive and cannot capture dynamic information.
More:

c. Github Permalinks: Custom errors
d. Mitigation: Consider using custom errors.

13. Unused imports
a. Summary: Unused imports increase gas costs and affect readability.
b. Details: Some contracts and interfaces imported are never used. Any unused

imports and inherited contracts should be removed or used appropriately after
careful evaluation. This will not only reduce gas costs but improve readability
and maintainability of the code.

https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L91-L98
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L162-L171
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L53-L54
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/ClearingHouse.sol#L23
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L19
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Vault.sol#L20
https://blog.soliditylang.org/2021/04/21/custom-errors/

c. Github Permalinks: ClearingHouse.sol#L6,
ClearingHouse.sol#L42, Perpetual.sol#L5, Vault.sol#L6,
VirtualToken.sol#L9, VBase.sol#L6, VQuote.sol#L8

d. Mitigation: Evaluate and remove all unused imports.
14. Redundant check on vault.deposit return value

a. Summary: Function _deposit checks vault.deposit return value with a
require which will always pass.

b. Details: vault.deposit already requires
wadAmount.toInt256()>=MIN_DEPOSIT_AMOUNT before returning
wadAmount and so the returned value will strictly be positive
(MIN_DEPOSIT_AMOUNT is constant > 0, so wadAmount will always be > 0).
Checking this return value in _deposit of ClearingHouse.sol with a
require is redundant.

c. Github Permalinks: ClearingHouse.sol#L514, Vault.sol#L103
d. Mitigation: Remove the require statement.

15. Unnecessary type conversions affect readability
a. Summary: Variables of a given type are explicitly converted to their own type.
b. Details: In VirtualToken.sol functions mint and burn, owner is

already of address type. In Perpetual.sol constructor, _vBase and
_market are already of type IVBase and ICryptoSwap respectively. In
VBase.sol constructor, decimals can be called directly on
_aggregator without explicit conversion to address and then back to
AggregatorV3Interface.

c. Github Permalinks: mint, burn, Perpetual.sol#L106,
VBase.sol#L23

d. Mitigation: Remove unnecessary type conversions to improve readability.
16. Unnecessary conditional operator

a. Summary: In function extendPosition of Perpetual.sol, the
statement bool isLong = direction ==
LibPerpetual.Side.Long ? true : false may be replaced by the
equivalent statement bool isLong = direction ==
LibPerpetual.Side.Long.

b. Details: Expression of type x == condition ? true : false has the
same effect as x == condition. The conditional operator is not needed.

c. Github Permalinks: Perpetual.sol#L164
d. Mitigation: Replace with bool isLong = direction ==

LibPerpetual.Side.Long.
17. Inconsistency in usage of wadMul

a. Summary: In Perpetual.sol, wadMul is used to perform decimal
multiplication except in one place.

b. Details: _checkPriceDeviation performs a multiplication without using
wadMul in (MAX_PRICE_DEVIATION * currentPrice >
(currentPrice - startBlockPrice).abs() * 1e18).

c. Github Permalinks: _checkPriceDeviation

https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/ClearingHouse.sol#L6
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/ClearingHouse.sol#L42
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L5
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Vault.sol#L6
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/VirtualToken.sol#L9
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/VBase.sol#L6
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/VQuote.sol#L8
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/ClearingHouse.sol#L514
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Vault.sol#L103
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/VirtualToken.sol#L17
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/VirtualToken.sol#L21
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L106
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/tokens/VBase.sol#L23
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L164
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L908

d. Mitigation: Unless there is a reason for exception, it is best to use wadMul to
be consistent with decimal multiplication elsewhere in the contract.

18. Undocumented privileged functions
a. Summary: The contract owner address is capable of performing additional

privileged functions in addition to those documented.
b. Details: The governance page in documentation indicates that the

governance address is capable of performing these four privileged functions:
Pausing/unpausing, adding new pairs, removing excess insurance funds and
selling CryptoSwap dust. However, there are several additional functions
marked onlyOwner that constitute privileged functionality. Vault.sol: Set
a new clearing house contract, potentially to a malicious contract that could
drain the vault through withdraw which is marked onlyClearingHouse,
set a new insurance contract and set a new max TVL.Insurance.sol:
Withdraw all tokens in the Insurance contract.

c. Github Permalinks: Vault.setClearingHouse,
Vault.setInsurance, Vault.setMaxTVL,
Insurance.withdrawRemainder

d. Mitigation: These permissions should either be documented for transparency
or removed if deemed unnecessary. As it currently stands, the governance
address could remove all funds from the vault or insurance contract. If the
permissions are kept, consider including a timelock before the changes are
executed. This would allow users time to remove their funds from the vault
before a major modification is made, or in the event of a governance
attack/key compromise.

19. Missing zero-address check in ERC20 functions
a. Summary: BaseERC20 implementation does not include zero-address

check.
b. Details: BaseERC20 is documented as a more modern and gas efficient

version of the OpenZeppelin library as modified from the Solmate version.
One of the items removed appears to be the zero-address check in functions.

c. Github Permalinks: approve, transfer, transferFrom, _mint, _burn
d. Mitigation: Consider including zero-address checks (where necessary) on

user functions that may otherwise cause tokens to be burned.
20. Missing sweep function could be useful

a. Summary: ERC20 tokens, other than protocol-specific ones, may become
locked in contracts.

b. Details: Tokens sent by mistake to Vault or ClearingHouse can be
locked without a mechanism to recover them.

c. Github Permalinks: Vault, ClearingHouse
d. Mitigation: Consider adding a sweep function allowing governance to

withdraw tokens other than reserveToken from these contracts.
21. Gas optimisation by avoiding initialisation to default values

a. Summary: Avoiding initialisation of variables to default values of their types
will save gas.

b. Details: Integers in Solidity are initialised to zero by default. Therefore, there
is no need to again initialise the integer variable to zero after declaration.

https://increment-team.gitbook.io/developer-docs/guides/governance
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L219
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L225
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol#L231
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Insurance.sol#L49
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/tokens/BaseERC20.sol#L45
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/tokens/BaseERC20.sol#L53
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/tokens/BaseERC20.sol#L67
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/tokens/BaseERC20.sol#L93
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/tokens/BaseERC20.sol#L105
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Vault.sol
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouse.sol

c. Github Permalinks: fundingPayments, fundingPayments
d. Mitigation: Avoid initialisation of variables to default values of their types

22. Gas optimisation by avoiding strings larger than bytes32
a. Summary: Revert strings larger than bytes32 will cost more gas
b. Details: EVM is a stack machine with 256-bits (32-bytes) for each stack slot.

Storing data larger than 32 bytes requires accessing more stack slots and
therefore uses more gas.

c. Github Permalinks: _reducePosition, liquidate
d. Mitigation: Use a string less than 32 bytes or consider using custom errors.

23. Gas optimisation by using memory variables
a. Summary: Gas optimizations can be achieved by using parameters from

memory and caching repeatedly accessed state variables or return values of
external function calls in local memory variables.

b. Details:
i. Parameters from memory can be used for _vBase and _vQuote

instead of reading their corresponding state variables assigned earlier
from the same parameters.

ii. Function withdraw of contract Vault makes two identical calls to
withdrawToken.balanceOf(address(this)) where the return
value is the same for the two calls. Caching the return value in
memory can save gas.

c. Github Permalinks:
i. Perpetual.sol#L102-L103
ii. Vault.sol#L181-L182

d. Mitigation: Caching in memory can save gas.

CARE: Disclaimer
CARE is not an audit as is typically performed by smart contract security audit firms. CARE
participants aim primarily to identify commonly known security pitfalls & best-practices but
not necessarily application-specific or economic vulnerabilities which are expected to be the
focus of future security audits. CARE assumes (as notified and agreed upon earlier in the
CARE SoW) that the project will get one or more security audits after CARE to cover those
aspects. Furthermore, CARE is a best-effort endeavour. Secureum will not be held
responsible for any loss/lock of funds/services resulting from vulnerabilities/exploits in
projects after they have gone through CARE review.

https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L722
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L296
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/Perpetual.sol#L605
https://github.com/Increment-Finance/increment-secureum/blob/a77a885fbec147429e66787bc1b7e76919824650/contracts/ClearingHouse.sol#L298
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Perpetual.sol#L102-L103
https://github.com/Increment-Finance/increment-secureum/blob/main/contracts/Vault.sol#L181-L182

