
Increment Security Review
Pashov Audit Group

Conducted by: 0xbepresent, Peakbolt, T1MOH
February 12nd 2024 - February 22nd 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Increment Finance
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Critical Findings
[C-01] Redeem period is less than intended down to 0

8.2. High Findings
[H-01] StakedToken is vulnerable to share inflation
attack via donation
[H-02] Stakers could lose extra rewards due to accrual on
behalf
[H-03] Users can't claim all rewards after reward token
removal
[H-04] Griefer can reset users' multiplier to 1
[H-05] Trapped underlying tokens in the auction

8.3. Medium Findings
[M-01] returnFunds() can be frontrun to profit from an
increase in share price
[M-02] addStakedToken() can be griefed
[M-03] Stakers can activate cooldown during the pause
and try to evade slashing
[M-04] Disabling of cooldown during post-slash can be
bypassed
[M-05] Final slashed amount could be much lower than
expected

1

3

3

3

3

4

4
4
5

5

6

9

9

9

11

11

12

15

16

19

23

23

24

25

26

28

[M-06] Extra rewards due to a malfunction with the
_cumulativeRewardPerLpToken
[M-07] Unauthorized rewardTokens in
_marketWeightsByToken

8.4. Low Findings
[L-01] Disabling the cooldown period during post-
slashing could affect the auction
[L-02] _updateMarketRewards() could apply a lower
inflation rate than expected
[L-03] Add sanity check that totalWeight equals 100% in
PerpRewardDistributor
[L-04] Consider adding a withdrawal timer on registering
the perp position
[L-05] The ongoing auctions may fail to close during the
AuctionModule replacement
[L-06] The AuctionModule.paymentToken could become
indefinitely trapped in the SafetyModule contract
[L-07] Malfunction within the auctions if there are
multiple staked tokens with the same underlying token
[L-08] Stakers affected by some modifications
[L-09] Attacker can grief whale stakers with dust transfer
[L-10] Missing check in addRewardToken() could cause
excess rewards accrual
[L-11] Additional parameter for StakedToken::_redeem()
[L-12] Penalized users due to changes in
_earlyWithdrawalThreshold
[L-13] _totalUnclaimedRewards not decrementing case

2

29

31

34

34

35

36

36

37

37

39

42

44

45

48

48

50

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the peripheral-contracts repository was done by
Pashov Audit Group, with a focus on the security aspects of the application's smart
contracts implementation.

4. About Increment Finance
Peripheral smart contracts for Increment Protocol. The Increment protocol
introduces an autonomous non-upgradable smart contract system that uses pooled
collateral backed virtual assets for liquidity and leverages Curve V2's AMM
(Automated Market Maker) for trade execution.

3

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

4

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - d62bba59f3bd15b47f32ff417a29b61667a7727c

fixes review commit hash - bc56572bf73a534500e79a6944399acc6e3c4b37

Scope

The following smart contracts were in scope of the audit:

AdminControlledEcosystemReserve

AuctionModule.sol

EcosystemReserve

PerpRewardDistributor

RewardController

RewardDistributor

SMRewardDistributor

SafetyModule

StakedToken

IAdminControlledEcosystemReserve

IPerpRewardDistributor

IRewardController

IRewardDistributor

ISMRewardDistributor

ISafetyModule

IStakedToken

5

https://github.com/Increment-Finance/peripheral-contracts/tree/d62bba59f3bd15b47f32ff417a29b61667a7727c
https://github.com/Increment-Finance/peripheral-contracts/tree/bc56572bf73a534500e79a6944399acc6e3c4b37

7. Executive Summary
Over the course of the security review, 0xbepresent, Peakbolt, T1MOH engaged
with Increment Finance to review Increment Finance. In this period of time a total
of 26 issues were uncovered.

Protocol Summary
Protocol Name Increment Finance

Repository https://github.com/Increment-Finance/peripheral-contracts

Date February 12nd 2024 - February 22nd 2024

Protocol Type Perpetuals AMM

Findings Count
Severity Amount

Critical 1

High 5

Medium 7

Low 13

Total Findings 26

6

Summary of Findings
ID Title Severity Status

[C-01] Redeem period is less than intended
down to 0 Critical Resolved

[H-01] StakedToken is vulnerable to share
inflation attack via donation High Resolved

[H-02] Stakers could lose extra rewards due
to accrual on behalf High Resolved

[H-03] Users can't claim all rewards after
reward token removal High Acknowledged

[H-04] Griefer can reset users' multiplier to 1 High Resolved

[H-05] Trapped underlying tokens in the
auction High Resolved

[M-01] returnFunds() can be frontrun to profit
from an increase in share price Medium Resolved

[M-02] addStakedToken() can be griefed Medium Resolved

[M-03] Stakers can activate cooldown during
the pause and try to evade slashing Medium Resolved

[M-04] Disabling of cooldown during post-
slash can be bypassed Medium Resolved

[M-05] Final slashed amount could be much
lower than expected Medium Resolved

[M-06]
Extra rewards due to a malfunction
with the
_cumulativeRewardPerLpToken

Medium Resolved

[M-07] Unauthorized rewardTokens in
_marketWeightsByToken Medium Resolved

7

[L-01] Disabling the cooldown period during
post-slashing could affect the auction Low Resolved

[L-02] _updateMarketRewards() could apply
a lower inflation rate than expected Low Acknowledged

[L-03]
Add sanity check that totalWeight
equals 100% in
PerpRewardDistributor

Low Resolved

[L-04] Consider adding a withdrawal timer
on registering the perp position Low Acknowledged

[L-05]
The ongoing auctions may fail to
close during the AuctionModule
replacement

Low Resolved

[L-06]
The AuctionModule.paymentToken
could become indefinitely trapped in
the SafetyModule contract

Low Resolved

[L-07]
Malfunction within the auctions if
there are multiple staked tokens with
the same underlying token

Low Resolved

[L-08] Stakers affected by some
modifications Low Acknowledged

[L-09] Attacker can grief whale stakers with
dust transfer Low Resolved

[L-10] Missing check in addRewardToken()
could cause excess rewards accrual Low Acknowledged

[L-11] Additional parameter for
StakedToken::_redeem() Low Acknowledged

[L-12] Penalized users due to changes in
_earlyWithdrawalThreshold Low Acknowledged

[L-13] _totalUnclaimedRewards not
decrementing case Low Acknowledged

8

8. Findings

8.1. Critical Findings

[C-01] Redeem period is less than intended
down to 0

Severity
Impact: High, StakedTokens are not redeemable in case the cooldown period
is 2 times greater than unstake window, therefore underlying tokens are stuck
forever

Likelihood: High, calculation mistake on redeem

Description
To redeem StakedToken, the user needs to submit a request to cooldown() and
wait time of COOLDOWN_SECONDS . Then he should be able to redeem for a period
of UNSTAKE_WINDOW after cooldown.

However, this check underestimates the open window by 2 *
COOLDOWN_SECONDS :

9

function _redeem(address from, address to, uint256 amount) internal {
 ...

 // Users can redeem without waiting for the cooldown period in a
 // post-slashing state
 if (!isInPostSlashingState) {
 // Make sure the user's cooldown period is over and the unstake
 // window didn't pass
 uint256 cooldownStartTimestamp = _stakersCooldowns[from];
 if (block.timestamp < cooldownStartTimestamp + COOLDOWN_SECONDS) {
 revert StakedToken_InsufficientCooldown
 (cooldownStartTimestamp + COOLDOWN_SECONDS);
 }
@> if
 (block.timestamp - cooldownStartTimestamp + COOLDOWN_SECONDS > UNSTAKE_WINDOW) {
 revert StakedToken_UnstakeWindowFinished
 (cooldownStartTimestamp + COOLDOWN_SECONDS + UNSTAKE_WINDOW);
 }
 }

 // ... redeem logic
 }

Here you can see PoC

Recommendations
Refactor check to:

- if
- (block.timestamp - cooldownStartTimestamp + COOLDOWN_SECONDS > UNSTAKE_WINDOW) {
+ if
+ (block.timestamp - cooldownStartTimestamp - COOLDOWN_SECONDS > UNSTAKE_WINDOW) {

10

https://gist.github.com/T1MOH593/e0a5424ca14facb3661b78c3d14530b1

8.2. High Findings

[H-01] StakedToken is vulnerable to share
inflation attack via donation

Severity
Impact: High, as the targeted staker will lose fund

Likelihood: Medium, possible when all stakers redeemed their stake

Description
StakedToken allows staking of underlying tokens (assets) for staked tokens
(shares). It uses an explicit exchangeRate for share price calculation that is
updated on slashing/returning of funds.

As the exchangeRate is updated using the
UNDERLYING_TOKEN.balanceOf(address(this)) in StakedToken , it is
vulnerable to manipulation via donation by sending underlying tokens directly
to StakedToken contract.

function returnFunds
 (address from, uint256 amount) external onlySafetyModule {

 if (amount == 0) revert StakedToken_InvalidZeroAmount();
 if (from == address(0)) revert StakedToken_InvalidZeroAddress();

 // Update the exchange rate

 _updateExchangeRate(UNDERLYING_TOKEN.balanceOf(address
 (this)) + amount, totalSupply());

 // Transfer the underlying tokens back to this contract
 UNDERLYING_TOKEN.safeTransferFrom(from, address(this), amount);
 emit FundsReturned(from, amount);
 }

An attacker can exploit the issue in the following scenario,

1. Suppose a slash event occurs with 50% of the underlying token slashed,
causing the exchange rate to be 1:2 (asset to shares).

11

2. All stakers redeemed their shares, except the attacker, who still has 2 wei
shares (StakedToken) to the remaining 1 wei underlying token.

3. While it is occurring, the attacker periodically activates cooldown to remain
within the cooldown period and unstake window, so that he can redeem as
required.

4. Governance calls SafetyModule._returnFunds() , which indirectly calls
StakedToken._updateExchangeRate() . This could occur when the auction
completes, or when governance manually returns funds to StakedToken .

5. A victim now attempts to stake 1000e18 underlying tokens into
StakedToken .

6. When the attacker observes tx 5 and tx 6 in mempool, he frontruns them to
inflate share price with a direct donation of 1000e18*2 to StakedToken . This
will cause exchangeRate = (1000e18*2+1)/2 .

7. Now victim will receive zero share for tx 5, as stakeAmount =
amountToStake/exchangeRate = 1000e18/((1000e18*2+1)/2) = 0 .

8. The attacker can then now redeem his 2 wei share with a profit of 1000e18
underlying tokens by stealing from the victim. The donation cost will also be
recovered with the redemption.

Recommendations
Implement an internal balance tracking for the underlying token in
StakedToken .

This mitigation also requires an invariant total underlying token balance
<= total shares to be implemented for functions that increase underlying
token balance without increasing shares like returnFunds() . Otherwise, it will
enable an attacker to perform stealth donation by staking. For example when
the exchange rate is 2:1 (asset to shares), staking 1 wei underlying token will
mint zero shares, which then have the effect of donating 1 wei and inflating
share price as the share count remains the same.

Also, it will not work with rebasing tokens and might need a rescue fund
function for unintended donations via direct underlying token transfer (not
through StakedToken).

[H-02] Stakers could lose extra rewards due
to accrual on behalf

12

Severity
Impact: Medium, loss of extra rewards for users who want to accumulate
unaccrued rewards and claim at max rewards multiplier

Likelihood: High, always occurs as anyone can claim rewards on behalf

Description
Stakers are allocated a rewards multiplier that incentivizes them to
keep/increase their stakes for a long period of time. The reward multiplier
increases over time, and is applied to the unaccrued rewards when the staker
claims the reward or changes their stake position.

The design is such that a staker can maximize their rewards by staking once
and only claiming when the reward multiplier reaches the max value. This
means the max reward multiplier will be applied to the unaccrued rewards
when the staker proceeds to claim it.

However, the accumulation of unaccrued rewards can be disrupted when the
staker receives 1 wei dust staked token from someone else, as it will call
SMRewardDistributor.updatePosition() . The same disruption will also occur
when someone triggers claimRewardsFor() on behalf of the staker. Both
actions will trigger the accrual of the rewards and apply the reward multiplier
at that point in time, preventing the staker from maximizing the rewards with
the max reward multiplier.

Also, receiving staked tokens from someone else will delay the
_multiplierStartTimeByUser , though the impact will be low for dust transfer
due to the token-weighted computation.

13

function updatePosition
 (address market, address user) external virtual override {
 ...

 // Accrue rewards to the user for each reward token
 uint256 rewardMultiplier = computeRewardMultiplier(user, market);
 uint256 numTokens = rewardTokens.length;
 for (uint256 i; i < numTokens;) {
 address token = rewardTokens[i];
 ...

 //@audit When staker receives new staked tokens, this will trigger
 // the reward accrual
 // and apply the current reward multiplier.
 uint256 newRewards = prevPosition.mul(

 _cumulativeRewardPerLpToken[token][market] - _cumulat
).mul(rewardMultiplier);

 // Update the user's stored accumulator value

 _cumulativeRewardPerLpTokenPerUser[user][token][market] = _cu
 }
 ...

 //@audit a transfer by someone else will also delay the multiplier
 // start time
 _multiplierStartTimeByUser[user][market] +=
 (block.timestamp - _multiplierStartTimeByUser[user][market]).mul(
 (newPosition - prevPosition).div(newPosition)
);
 ...
 }

 function claimRewardsFor(address _user, address[] memory _rewardTokens)
 public
 override
 nonReentrant
 whenNotPaused
 {
 uint256 numMarkets = _getNumMarkets();
 for (uint256 i; i < numMarkets;) {

 //@audit When someone claims reward on behalf of staker, it will
 // trigger
 // the reward accrual and apply the current reward multiplier.
 _accrueRewards(_getMarketAddress(_getMarketIdx(i)), _user);

 ...
 }
 ...
 }

Suppose the scenario,

1. Alice staked 1000 underlying tokens and intends to wait for 50 days to allow
the reward multiplier to reach the maximum value before claiming the
rewards.

2. On day 25, Bob proceeds to sabotage Alice and transfer 1 wei of staked
token to Alice, disrupting the accumulation of unaccrued rewards.

14

3. The transfer triggers SMRewardDistributor.updatePosition() and accrues
the accumulated reward with the reward multiplier value at day 25. This is
against Alice's intention as the reward multiplier has not reached the max
value.

4. At day 50, Alice's reward multiplier reached the max value and she
proceeded to claim the rewards. However, only the accrued rewards from
day 25 were applied with the max reward multiplier as Bob has already
triggered the previous accrual in step 3.

5. Due to Bob's actions, Alice has lost the extra rewards that she would have
earned if the full reward accrual was done on day 50 when it hits the max
reward multiplier.

Note: Bob could also repeat the same transfer more frequently to further
diminish the rewards for Alice. The same disruption can be achieved using
claimRewardsFor() too.

Recommendations
First, prevent claiming rewards on behalf and only allow claiming by the
staker himself. Second, impose a minimum transfer amount such that the
receiver would benefit more from the transfer than the lost reward.

[H-03] Users can't claim all rewards after
reward token removal

Severity
Impact: High, there are always users who can't claim reward

Likelihood: Medium, token removal is not a usual operation but is possible

Description
There is a method removeRewardToken() which leaves only accrued but not yet
claimed rewards in reserve, transferring the other part to governance. The issue
is that the method doesn't take into consideration pending but not yet accrued
rewards.

Relevant code block:

15

function removeRewardToken(address _rewardToken) external onlyRole
 (GOVERNANCE) {
 ...
 // Determine how much of the removed token should be sent back to
 // governance
 uint256 balance = _rewardTokenBalance(_rewardToken);
 uint256 unclaimedAccruals = _totalUnclaimedRewards[_rewardToken];
 uint256 unaccruedBalance;
 if (balance >= unclaimedAccruals) {
 unaccruedBalance = balance - unclaimedAccruals;
 // Transfer remaining tokens to governance (which is the sender)
 IERC20Metadata(_rewardToken).safeTransferFrom
 (ecosystemReserve, msg.sender, unaccruedBalance);
 }
 }

Variable _totalUnclaimedRewards is updated only on reward claim and
position updates, therefore doesn't contain pending rewards

Recommendations
Leave enough tokens in reserve after token removal to cover current rewards
to users. However fix is not obvious due to earlyWithdrawalPenalty and
rewardMultiplier which depend on the user and can't be calculated in
advance.

[H-04] Griefer can reset users' multiplier to
1

Severity
Impact: High, multiplier of a certain user can be permanently kept at 1 at the
will of an attacker, which lowers the user's reward multiple times

Likelihood: Medium, there is no direct benefit for the attacker to perform it,
however, there are no preconditions

Description
Multiplier must be reset in several situations in SMRewardDistributor.sol :

16

if (prevPosition == 0 || newPosition <= prevPosition) {
 // Removed stake, started cooldown or staked for the first time -
 // need to reset reward multiplier
 if (newPosition != 0) {
 /**

 * Partial removal, cooldown or first stake - reset
 * Rationale:

 * - If prevPosition == 0, it's the first time the u

 * - If newPosition < prevPosition, the user has rem

 * is meant to encourage stakers to keep their tok
@>
 * - If newPosition == prevPosition, the user has started their cooldo

 * the system by always remaining in either the co
 */
 _multiplierStartTimeByUser[user][market] = block.timestamp;
 } else {
 // Full removal - set multiplier to 0 until the user stakes
 // again
 delete _multiplierStartTimeByUser[user][market];
 }

However condition newPosition == prevPosition can be triggered not only
on cooldown, but in 2 additional situations:

1. Zero transfer to destination address resets multiplier to 1 of destination
user. Which introduces griefing.

2. User transferring tokens to himself will reset the multiplier, however,
naturally, he didn't adjust the position and the multiplier should remain the
same.

Recommendations
Remove = from condition, instead use flag isStartCooldown() and set it to
true in function cooldown()

17

- function updatePosition
- (address market, address user) external virtual override {
+ function updatePosition
+ (address market, address user, bytes calldata data) external virtual override {
+ bool isStartCooldown = abi.decode(data, (bool));
 ...
- if (prevPosition == 0 || newPosition <= prevPosition) {
+ if (prevPosition == 0 || newPosition < prevPosition) {
 // Removed stake, started cooldown or staked for the first time -
 // need to reset reward multiplier
 if (newPosition != 0) {
 /**

 * Partial removal, cooldown or first stake - reset
 * Rationale:

 * - If prevPosition == 0, it's the first time the u

 * - If newPosition < prevPosition, the user has rem

 * is meant to encourage stakers to keep their tok

 * - If newPosition == prevPosition, the user has st

 * the system by always remaining in either the co
 */
 _multiplierStartTimeByUser[user][market] = block.timestamp;
 } else {
 // Full removal - set multiplier to 0 until the user stakes
 // again
 delete _multiplierStartTimeByUser[user][market];
 }
+ } else if (isStartCooldown) {
+ _multiplierStartTimeByUser[user][market] = block.timestamp;
 } else {
 /**

 * User added to their existing stake - need to update multi
 * Rationale:

 * - To prevent users from gaming the system by staked a sma

 * then staked a large amount once their multiplier is ver

 * - We shift the start time of the multiplier forward by an

 * increase in stake, i.e., `newPosition - prevPosition`,

 * time forward we reduce the multiplier proportionally in

 * bad behavior while limiting the impact on users who are
 */
 _multiplierStartTimeByUser[user][market] +=
 (block.timestamp - _multiplierStartTimeByUser[user][market]).mul(
 (newPosition - prevPosition).div(newPosition)
);
 }
...
 }

18

[H-05] Trapped underlying tokens in the
auction

Severity
Impact: High, because there will be underlying tokens that cannot be
returned to the staked token contract, trapping those underlying tokens
within the AuctionModule contract. Additionally, the auction cannot be closed,
preventing the entire lot from being bought. The staked token would become
unusable as there is no way to stake due to isInPostSlashingState being true.

Likelihood: Medium, because there are no restrictions for users to redeem all
their tokens. If users decide to redeem all their tokens, the staked token will
be left with zero supply.

Description
During an insolvency event, the governance can take underlying tokens
from the StakedToken contract and auction them using the function
SafetyModule::slashAndStartAuction . This action sends the underlying
tokens to the AuctionModule.sol contract, initiating the auction.

Subsequently, the auction can be closed using the
AuctionModule::_completeAuction function. This function can be called when
all underlying tokens are auctioned in AuctionModule::buyLots , when the
auction expires and someone decides to end the auction with the function
AuctionModule::completeAuction , or when governance decides to terminate
the auction early with the function SafetyModule::terminateAuction .

The issue arises when there are no restrictions on redeeming staked tokens
during the auction process. Users can completely exit and redeem all their
tokens. Later, when attempting to close the auction, it will fail due to a
division by zero error . This happens because when
AuctionModule::_completeAuction is called, it invokes
StakedToken::returnFunds and then updates the exchange rate using the
function StakedToken::_updateExchangeRate . This function performs a
division by totalSupply() , which is zero (code line StakedToken#L240):

19

File: StakedToken.sol
235: function returnFunds
 (address from, uint256 amount) external onlySafetyModule {
236: if (amount == 0) revert StakedToken_InvalidZeroAmount();
237: if (from == address(0)) revert StakedToken_InvalidZeroAddress();
238:
239: // Update the exchange rate
240: _updateExchangeRate(UNDERLYING_TOKEN.balanceOf(address
 (this)) + amount, totalSupply());
241:
242: // Transfer the underlying tokens back to this contract
243: UNDERLYING_TOKEN.safeTransferFrom(from, address(this), amount);
244: emit FundsReturned(from, amount);
245: }

Consider the following scenario:

1. UserA stakes 100e18 underlyingTokens and receives 100e18 staked
tokens .

2. An insolvency event occurs, and a 20e18 underlyingTokens auction is
initiated.

3. UserA decides to redeem all their tokens, leaving
stakedToken.totalSupply=0 .

4. The auction ends, and AuctionModule::_completeAuction is called, but it
cannot close due to a division by zero error .

5. The last lot cannot be bought, as the function AuctionModule::buyLots
attempts to close the auction, resulting in a transaction being reverted due to
a division by zero error .

6. The staked token becomes unusable since staking is no longer possible
(isInPostSlashingState is true).

7. The underlying tokens that were not auctioned remain trapped within
AuctionModule .

I conducted the following test, which demonstrates that ending an auction will
be reversed when liquidityProviderOne redeems all the staked tokens ,
leaving the remaining underlying tokens trapped in AuctionModule.sol :

20

// Filename: test/unit/SafetyModuleTest.sol:SafetyModuleTest
 // $ forge test --match-test "testFuzz_TerminateAuctionErrorZero" -vvv
 function testFuzz_TerminateAuctionErrorZero(
 uint8 numLots,
 uint128 lotPrice,
 uint128 initialLotSize,
 uint64 slashPercent,
 uint16 lotIncreasePeriod,
 uint32 timeLimit
) public {
 /* bounds */
 numLots = uint8(bound(numLots, 2, 10));
 lotPrice = uint128(bound
 //(lotPrice, 1e8, 1e12)); // denominated in USDC w/ 6 decimals
 slashPercent = uint64(bound(slashPercent, 1e16, 1e18));
 // lotSize x numLots should not exceed auctionable balance
 uint256 auctionableBalance = stakedToken1.totalSupply().wadMul
 (slashPercent);
 initialLotSize = uint128(bound
 (initialLotSize, 1e18, auctionableBalance / numLots));
 uint96 lotIncreaseIncrement = uint96(bound
 (initialLotSize / 50, 2e16, type(uint96).max));
 lotIncreasePeriod = uint16(bound(lotIncreasePeriod, 1 hours, 18 hours));
 timeLimit = uint32(bound(timeLimit, 5 days, 30 days));
 //
 // 1. Start an auction and check that it was created correctly
 uint256 auctionId = _startAndCheckAuction(
 stakedToken1,
 numLots,
 lotPrice,
 initialLotSize,
 slashPercent,
 lotIncreaseIncrement,
 lotIncreasePeriod,
 timeLimit
);
 //
 // 2. `liquidityProviderOne` redeems all tokens
 vm.startPrank(liquidityProviderOne);
 uint256 stakedBalance = stakedToken1.balanceOf(liquidityProviderOne);
 stakedToken1.redeem(stakedBalance);
 vm.stopPrank();
 //
 // 3. `SafetyModule` terminates auction, the transaction will be
 // reverted by "panic: division or modulo by zero"
 vm.expectRevert();
 safetyModule.terminateAuction(auctionId);
 //
 // 4. underlying token trapped in `AuctionModule` contract
 assertGt(stakedToken1.getUnderlyingToken().balanceOf(address
 //(auctionModule)), 0); // AuctionModule.underlyingBalance > 0
 }

Recommendations
It is suggested that when stakedToken.totalSupply=0 , the exchangeRate
should be set to 1e18 .

21

function _updateExchangeRate
 (uint256 totalAssets, uint256 totalShares) internal {
++ if (totalShares == 0)
++ exchangeRate = 1e18;
++ else
++ exchangeRate = totalAssets.wadDiv(totalShares);
 emit ExchangeRateUpdated(exchangeRate);
 }

22

8.3. Medium Findings

[M-01] returnFunds() can be frontrun to
profit from an increase in share price

Severity
Impact: High, an attacker can profit from the share price increase

Likelihood: Low, only profitable if a large amount of funds are returned

Description
SafetyModule.returnFunds() is used by governance to inject funds back into
StakedToken , in the form of underlying tokens. For example, when there are
excess funds raised from the auction, they can be returned back to compensate
the stakers.

The issue is that anyone can frontrun returnFunds() with a stake() to profit
from the share price increase and then redeem shortly once it has reached the
unstake window. This will be profitable if a large amount of funds are returned
within a transaction.

Furthermore, a return of funds likely indicates there will be no slash event in
the near term, which makes it a risk-free transaction to capitalize on it and wait
for the unstake window to redeem.

Recommendations
If returning excess funds raised is the only scenario when returnFunds() is
used, then a solution would be to set a target fund amount to raise, and end the
auction early when it is reached. This ensures minimal/zero excess funds will
be raised if the auction has reached the target, and only requires a small/no
amount of funds to be returned to StakedToken .

Otherwise, the alternative solution is to pause the contract without indicating
the reason (to deter anticipation) and then call returnFunds() after a few
blocks to prevent frontrunning. Finally un-pause the contract when it is

23

completed. This has the same effect as the post-slashing state check to disable
stake() , except that it is used after the auction ends.

Another possible solution is to return the funds via rewards token. It would be
a better incentive to keep users staked for a longer period as opposed to
increasing the share price, which users can reap the profit and withdraw after
the cooldown period. This will then not require the use of returnFunds() and
can be removed if not necessary.

[M-02] addStakedToken() can be griefed

Severity
Impact: Medium, prevent adding of StakedToken

Likelihood: Medium, can be conducted by staking 1 wei

Description
When a StakedToken is added to the SafetyModule via addStakedToken() , it
will call initMarketStartTime(StakedToken) to set
_timeOfLastCumRewardUpdate[StakedToken] = block.timestamp . If
_timeOfLastCumRewardUpdate was already set for that StakedToken , a check
will cause a revert to ensure that the start time has not been initialized.

function initMarketStartTime(address _market) external onlySafetyModule {
 //@audit When this function is called by addStakedToken
 //(), this check will revert
 // if start time has already been initialized
 if (_timeOfLastCumRewardUpdate[_market] != 0) {
 revert RewardDistributor_AlreadyInitializedStartTime(_market);
 }
 _timeOfLastCumRewardUpdate[_market] = block.timestamp;
 }

However, an attacker can exploit this check to cause addStakedToken() to fail
by performing a StakedToken.stake() with just 1 wei followed by a
registerPositions([StakedToken]) . This will indirectly call
_updateMarketRewards(StakedToken) , which will then set
_timeOfLastCumRewardUpdate[StakedToken] = block.timestamp , as it has not
been initialized yet.

24

Now that _timeOfLastCumRewardUpdate is initialized for the StakedToken , it
will cause subsequent addStakedToken() for that particular StakedToken to
revert and fail.

function _updateMarketRewards(address market) internal override {
 uint256 numTokens = rewardTokens.length;

 uint256 deltaTime = block.timestamp - _timeOfLastCumRewardUpdate[mark
 if (deltaTime == 0 || numTokens == 0) return;
 if
 (deltaTime == block.timestamp || _totalLiquidityPerMarket[market] == 0) {
 // Either the market has never been updated or it has no liquidity,
 // so just initialize the timeOfLastCumRewardUpdate and return

 //@audit This can be triggered by attacker via stake
 //() and registerPositions(),
 // before the StakedToken (market) is added to SafetyModule
 // to cause addStakedToken() to revert.
 _timeOfLastCumRewardUpdate[market] = block.timestamp;
 return;
 }

Recommendations
Remove registerPositions() for SMRewardDistributor since it is not
required.

Alternatively, in SMRewardDistributor._registerPosition() , verify that the
StakedToken has been added to SafetyModule using the check
safetyModule.getStakedTokenIdx(market) .

[M-03] Stakers can activate cooldown
during the pause and try to evade slashing

Severity
Impact: High, as staker can possibly evade the slash event and cause
remaining stakers to pay more for the slashing

Likelihood: Low, when the protocol is paused, followed by slash event

Description
StakedToken.cooldown() is missing the whenNotPaused modifier. That means
stakers can activate cooldown when the protocol is paused.

25

Stakers could be aware of or anticipate an upcoming slash event due to the
pause and attempt to stay within unstake window by activating cooldown when
the protocol is paused. As a pause event is an emergency action to mitigate
certain risks, there are reasons to believe that a protocol deficit could occur
after that, requiring a slash of staked tokens.

By activating cooldown during protocol pause, stakers could try to frontrun the
slash event with redemption if it occurs within the unstake window. Those who
succeeded in evading the slash event will cause the remaining stakers to pay
more for the slashing.

Note that the stakers will be penalized with a reset of the reward multiplier for
activating the cooldown, but the benefit of evading slash event will likely
outweigh the additional rewards at an emergency pause event.

//@audit missing whenNotPaused could allow
 function cooldown() external override {
 if (balanceOf(msg.sender) == 0) {
 revert StakedToken_ZeroBalanceAtCooldown();
 }
 if (isInPostSlashingState) {
 revert StakedToken_CooldownDisabledInPostSlashingState();
 }
 //solium-disable-next-line
 _stakersCooldowns[msg.sender] = block.timestamp;

 // Accrue rewards before resetting user's multiplier to 1
 smRewardDistributor.updatePosition(address(this), msg.sender);

 emit Cooldown(msg.sender);
 }

Recommendations
Add the whenNotPaused modifier to cooldown() .

[M-04] Disabling of cooldown during post-
slash can be bypassed

Severity
Impact: Medium, as staker can bypass disabling of cooldown

Likelihood: Medium, during the post slash period

Description
26

p
When StakedToken is in the post-slashing state, the cooldown function is
disabled, preventing the staker from activating it by setting
_stakersCooldowns[msg.sender] = block.timestamp .

However, the staker can possibly bypass the disabling of the cooldown
function by transferring to another account that has a valid cooldown
timestamp.

That is because when fromCooldownTimestamp is expired/not-set and
toCooldownTimestamp is valid, the weighted average will be set for the
receiving account's cooldown timestamp.

That will allow the staker to activate the cooldown for the staked token sent
from the sending account.

function getNextCooldownTimestamp(
 uint256 fromCooldownTimestamp,
 uint256 amountToReceive,
 address toAddress,
 uint256 toBalance
) public view returns (uint256) {
 uint256 toCooldownTimestamp = _stakersCooldowns[toAddress];
 if (toCooldownTimestamp == 0) return 0;

 uint256 minimalValidCooldownTimestamp = block.timestamp - COOLDOWN_SE

 //@audit when `toCooldownTimestamp` is still valid, this will continue
 // to next line
 if (minimalValidCooldownTimestamp > toCooldownTimestamp) return 0;

 //@audit when `fromCooldownTimestamp` has expired/not set, it will be
 // set to current time
 if (minimalValidCooldownTimestamp > fromCooldownTimestamp) {
 fromCooldownTimestamp = block.timestamp;
 }
 //@audit weighted-average will be set for recieving account, when
 // `toCooldownTimestamp` is still valid
 // and this will activate cooldown for the sent amount
 if (fromCooldownTimestamp >= toCooldownTimestamp) {
 toCooldownTimestamp = (amountToReceive * fromCooldownTimestamp +
 (toBalance * toCooldownTimestamp))
 / (amountToReceive + toBalance);
 }

 return toCooldownTimestamp;
 }

Recommendations
Disable transfer of StakedToken during post-slashing state to prevent
bypassing of the disabling of cooldown.

27

[M-05] Final slashed amount could be much
lower than expected

Severity
Impact: Medium, lower final slash amount could require further slashing,
causing remaining stakers to lose more

Likelihood: Medium, happens when slashed

Description
slashAndStartAuction() allows governance to slash a percentage of the
StakedToken to settle protocol deficits. A slash percentage is provided as a
parameter and derived from the absolute value required to cover the deficits.

However, as the slash transaction is executed based on the relative percentage
value, it could cause the final slashed value to end up less than expected, when
there are multiple redeem() occurring before it.

It could happen when stakers try to frontrun the slash when they see the public
proposal of the slashing or just simply due to race conditions.

When that occurs, this issue will cause the final slash amount to be lower than
the initial expected amount and be insufficient to cover the deficits. That means
another slash event is likely to be required and the issue could reoccur.

28

function slashAndStartAuction(
 address _stakedToken,
 uint8 _numLots,
 uint128 _lotPrice,
 uint128 _initialLotSize,
 uint64 _slashPercent,
 uint96 _lotIncreaseIncrement,
 uint16 _lotIncreasePeriod,
 uint32 _timeLimit
) external onlyRole(GOVERNANCE) returns (uint256) {
 if (_slashPercent > 1e18) {
 revert SafetyModule_InvalidSlashPercentTooHigh();
 }

 IStakedToken stakedToken = stakedTokens[getStakedTokenIdx
 (_stakedToken)];

 // Slash the staked tokens and transfer the underlying tokens to the
 // auction module
 //@audit slashAmount could end up lesser than expected if multiple
 // redemption occurred before this
 uint256 slashAmount = stakedToken.totalSupply().mul(_slashPercent);
 uint256 underlyingAmount = stakedToken.slash(address
 (auctionModule), slashAmount);
 ...
 }

Recommendations
It is also not feasible to predict the amount of redemption before the slash and
use that to set a higher slash percentage. Thus, it is better to use an absolute
slash amount.

Note that slashAndStartAuction() should also prevent a revert by using the
maximum possible amount to slash when the absolute slash amount is greater
than what is available to slash or the percentage cap.

[M-06] Extra rewards due to a malfunction
with the _cumulativeRewardPerLpToken

Severity
Impact: High, because users may receive more rewards than allocated.

Likelihood: Low, because it requires the removal and re-addition of a
rewardToken .

Description

29

When the rewards for a market are updated using the function
RewardDistributor::_updateMarketRewards , the
_cumulativeRewardPerLpToken variable is increased to later be used in the
_accrueRewards function for each user.

File: RewardDistributor.sol
281: function _updateMarketRewards(address market) internal override {
...
315: uint256 newRewards = getInflationRate(token).mulDiv
 (_marketWeightsByToken[token][market], MAX_BASIS_POINTS)
316: .mulDiv(deltaTime, 365 days).div
 (_totalLiquidityPerMarket[market]);
317: if (newRewards != 0) {
318: _cumulativeRewardPerLpToken[token][market] += newRewards;
319: emit RewardAccruedToMarket(market, token, newRewards);
320: }
...
327: }

File: SMRewardDistributor.sol
328: function _accrueRewards
 (address market, address user) internal virtual override {
...
...
357: uint256 newRewards = userPosition.mul(
358:
 _cumulativeRewardPerLpToken[token][market] - _cumulativeRewardPerLp
359:).mul(rewardMultiplier);
360: // Update the user's stored accumulator value
361:
 _cumulativeRewardPerLpTokenPerUser[user][token][market] = _cumulativeRe
...
382: }

The issue is that this _cumulativeRewardPerLpToken variable is not reset to
zero when a token is re-added using the RewardDistributor::addRewardToken
function, causing incorrect counting. Consider the following scenario:

1. The rewardTokenA is removed using the
RewardDistributor::removeRewardToken function, at this point,
_cumulativeRewardPerLpToken remains at, for example, 100 .

2. Time passes, and it is decided to re-add the same rewardTokenA using the
RewardDistributor::addRewardToken function.

3. At this point, users will accumulate rewards that should not be assigned to
them since the _accrueRewards function will perform the following
calculation for the new rewards:

uint256 newRewards = lpPosition.mul
 (_cumulativeRewardPerLpToken[token][market] - _cumulativeRewardPerLpTokenPerUser[use

30

Therefore, if a user has, for example, a position of 10e18 tokens , then their
rewards will be calculated as newRewards = 10e18 * (100 - 0) = 1000e18 ,
which is incorrect since those rewards (_cumulativeRewardPerLpToken) were
allocated before the execution of step 1 . The correct calculation should be
newRewards = 10e18 * (0 - 0) = 0 as for the point where the rewardToken
is re-added, it starts generating new rewards.

Recommendations
It is recommended to reset _cumulativeRewardPerLpToken to zero in the
RewardDistributor::addRewardToken function. This way, if for any reason
governance decides to re-add the same rewardToken , the rewards counting
will be correctly assigned.

Additionally, caution must be exercised in the implementation as rewards will
be lost for users who have not claimed their tokens within the period when the
reward token was removed.

[M-07] Unauthorized rewardTokens in
_marketWeightsByToken

Severity
Impact: High, because a market can receive unauthorized rewardTokens .

Likelihood: Low, as it requires a rewardToken to be re-added after
governance removes it.

Description
The _marketWeightsByToken variable is used in the
RewardDistributor::_updateMarketRewards function to assign rewards to a
market based on the weight assigned to that market:

31

File: RewardDistributor.sol
281: function _updateMarketRewards(address market) internal override {
...
315: uint256 newRewards = getInflationRate(token).mulDiv
 (_marketWeightsByToken[token][market], MAX_BASIS_POINTS)
316: .mulDiv(deltaTime, 365 days).div
 (_totalLiquidityPerMarket[market]);
317: if (newRewards != 0) {
318: _cumulativeRewardPerLpToken[token][market] += newRewards;
319: emit RewardAccruedToMarket(market, token, newRewards);
320: }
...
327: }

The issue arises when the rewardToken is removed using the
RewardDistributor::removeRewardToken function and later re-added using the
RewardDistributor::addRewardToken function. Consider the following
scenario:

1. The rewardTokenA is allocated 100% to the stakedToken1 market.
Therefore, _marketWeightsByToken[rewardTokenA][stakedToken1]=100% .

2. The rewardTokenA is removed using the
RewardDistributor::removeRewardToken function. At this point
_marketWeightsByToken[rewardTokenA][stakedToken1] is not cleared.

3. The rewardTokenA is added back using the
RewardDistributor::addRewardToken function, but it is assigned to a
different market, so rewardTokenA now distributes 100% to the
stakedToken2 market, hence _marketWeightsByToken[rewardTokenA]
[stakedToken2]=100% .

4. Then, a malicious user calls updatePosition using the stakedToken1
market, triggering
RewardDistributor::_updateMarketRewards(stakedToken1) . Since
_marketWeightsByToken[rewardTokenA][stakedToken1] was never reset to
zero, rewards are assigned to this market (stakedToken1), even though
rewardTokenA is no longer allocated to it.

The market stakedToken1 will receive unauthorized rewards even when
rewardTokenA distributes 100% to the stakedToken2 market in step3 , not to
the stakedToken1 market.

Recommendations
When removing a rewardToken , ensure that the associated
_marketWeightsByToken is also cleared.

32

function removeRewardToken(address _rewardToken) external onlyRole
 (GOVERNANCE) {
 ...
 ...
 // Update rewards for all markets before removal

 uint256 numMarkets = _rewardInfoByToken[_rewardToken].marketAddresses
 for (uint256 i; i < numMarkets;) {
 _updateMarketRewards
 (_rewardInfoByToken[_rewardToken].marketAddresses[i]);
 unchecked {
 ++i; // saves 63 gas per iteration
 }
++
+ delete _marketWeightsByToken[_rewardToken][_rewardInfoByToken[_rewardToken
 }
 ...
 ...
 }

33

8.4. Low Findings

[L-01] Disabling the cooldown period
during post-slashing could affect the auction

The StakedToken.redeem() function allows the redemption of staked tokens
after the stakers' cooldown period. During the post-slashing state when the
auction is ongoing, stakers can redeem immediately without waiting for a
cooldown period.

However, disabling the cooldown period during the auction would likely
trigger an immediate large wave of redemption, followed by the sale of the
redeemed tokens. This could affect the auction as it will increase the selling
pressure and lower the market value of the auctioned tokens. The outcome
could be that the funds raised from the auction are much less than expected
and require another slash event on a much smaller pool of staked tokens. In the
worst case, it could also lead to a death spiral of the staked tokens.

It is hard to predict the effect of the redemptions and difficult to ensure a
perfectly executed auction.

It may be a better idea to continue enforcing the cooldown period during post-
slashing state, to allow more progressive redemptions while providing time for
governance to act. It might not be fair to those who happened to have a longer
cooldown period, but it could still be a better outcome for them if the market
value of the staked tokens does not crash to a significantly lower value.

34

function _redeem(address from, address to, uint256 amount) internal {
 if (amount == 0) revert StakedToken_InvalidZeroAmount();
 if (exchangeRate == 0) revert StakedToken_ZeroExchangeRate();

 // Users can redeem without waiting for the cooldown period in a
 // post-slashing state
 if (!isInPostSlashingState) {
 // Make sure the user's cooldown period is over and the unstake
 // window didn't pass
 uint256 cooldownStartTimestamp = _stakersCooldowns[from];
 if (block.timestamp < cooldownStartTimestamp + COOLDOWN_SECONDS) {
 revert StakedToken_InsufficientCooldown
 (cooldownStartTimestamp + COOLDOWN_SECONDS);
 }
 if
 (block.timestamp - cooldownStartTimestamp + COOLDOWN_SECONDS > UNSTAKE_W
 revert StakedToken_UnstakeWindowFinished
 (cooldownStartTimestamp + COOLDOWN_SECONDS + UNSTAKE_WINDOW);
 }
 }
 ...
 }

[L-02] _updateMarketRewards() could apply
a lower inflation rate than expected

_updateMarketRewards() calculates the new rewards for the specific market
and token using the formula (inflationRatePerSecond x marketWeight x
deltaTime) / totalLiquidity . The inflation rate gradually decreases based on
the reduction factor and time elapsed.

However, as inflationRatePerSecond is derived at the time of calling
_updateMarketRewards() , it will be lower than expected if it was called after a
long period of time. In that scenario, the deltaTime will be larger as well,
which causes the reward computation to be lower than intended as a large
deltaTime is multiplied with a lower inflationRatePerSecond .

Even though the reward computation is lower than intended, the impact is
minimal as the computation is still applied uniformly for all stakers in that
market/staked token.

This issue could be mitigated by monitoring and triggering a
_updateMarketRewards() when deltaTime is too large.

35

[L-03] Add sanity check that totalWeight
equals 100% in PerpRewardDistributor

You perform this check in all places except constructor() in
PerpRewardDistributor on adding the initial rewardToken

[L-04] Consider adding a withdrawal timer
on registering the perp position

Users can manually register a position via registerPositions() if it had been
created before PerpRewardDistributor was deployed.

It should work like a normal position update, however, it misses updating the
field _withdrawTimerStartByUserByMarket . It is used to apply a penalty on
early withdrawal or liquidation:

if (newLpPosition < prevLpPosition) {
 // Removed liquidity - need to check if within early withdrawal
 // threshold

 uint256 deltaTime = block.timestamp - _withdrawTimerS
 if (deltaTime < _earlyWithdrawalThreshold) {
 // Early withdrawal - apply penalty
 // Penalty is linearly proportional to the time remaining in
 // the early withdrawal period
@> uint256 penalty = (newRewards *
 (_earlyWithdrawalThreshold - deltaTime)) / _earlyWithdrawalThreshold;
 newRewards -= penalty;
 emit EarlyWithdrawalPenaltyApplied
 (user, market, token, penalty);
 }
 }

For example in SMRewardDistributor similar field
_multiplierStartTimeByUser is updated:

function _registerPosition
 (address _user, address _market) internal override {
 super._registerPosition(_user, _market);
 if (_lpPositionsPerUser[_user][_market] != 0) {
 _multiplierStartTimeByUser[_user][_market] = block.timestamp;
 }
 }

36

[L-05] The ongoing auctions may fail to
close during the AuctionModule
replacement

The AuctionModule is replaceable using the
SafetyModule::setAuctionModule function. However, an issue arises when the
AuctionModule is changed while there are ongoing auctions. Upon
completion, these auctions may call the SafetyModule::auctionEnded
function:

File: AuctionModule.sol
361: function _completeAuction
 (uint256 _auctionId, bool _terminatedEarly) internal {
...
377: // Notify SafetyModule if necessary
378: if (!_terminatedEarly) {
379: safetyModule.auctionEnded(_auctionId, remainingBalance);
380: }
...
390: }

Leading to a potential error with the onlyAuctionModule modifier in
SafetyModule::auctionEnded . This is due to the fact that the calling auction
will no longer correspond to the expected module.

File: SafetyModule.sol
093: function auctionEnded
 (uint256 _auctionId, uint256 _remainingBalance) external onlyAuctionModule {

It is recommended that the SafetyModule::setAuctionModule function should
include a check to prevent module changes if there are active auctions within
the AuctionModule being replaced.

[L-06] The AuctionModule.paymentToken
could become indefinitely trapped in the
SafetyModule contract

When an auction concludes, the accumulated payment tokens are sent to the
SafetyModule contract:

37

File: AuctionModule.sol
361: function _completeAuction
 (uint256 _auctionId, bool _terminatedEarly) internal {
...
373: // SafetyModule will transfer funds to governance when
// `withdrawFundsRaisedFromAuction` is called
374: if (fundsRaised != 0) {
375: paymentToken.safeTransfer(address(safetyModule), fundsRaised);
376: }
...
390: }

Subsequently, with the assistance of the
SafetyModule::withdrawFundsRaisedFromAuction function, these tokens can
be obtained by the governance :

File: SafetyModule.sol
180: function withdrawFundsRaisedFromAuction
 (uint256 _amount) external onlyRole(GOVERNANCE) {
181: IERC20 paymentToken = auctionModule.paymentToken();
182: paymentToken.safeTransfer(msg.sender, _amount);
183: }

The issue arises when there is a change in the paymentToken using the
AuctionModule::setPaymentToken function. Consider the following scenario:

1. There is an ongoing auction using paymentToken=X .
2. The auction concludes, and the paymentToken X is sent to the SafetyModule .

However, the governance does not claim them using the
SafetyModule::withdrawFundsRaisedFromAuction function.

3. There is a need to change the payment token, and it is switched to
paymentToken=Y using the AuctionModule::setPaymentToken function.

4. A new auction is initiated using paymentToken Y .
5. Governance decides to call the

SafetyModule::withdrawFundsRaisedFromAuction function. However, this
function will not retrieve any tokens since it transfers the balance of
paymentToken Y , which the SafetyModule does not yet possess. On the
other hand, paymentToken X cannot be claimed and Governance can not
reverse the paymentToken change because this would affect the auction that
is in process.

The recommendation is to implement a validation to prevent changing the
payment token before the SafetyModule has claimed those tokens:

38

function setPaymentToken(IERC20 _newPaymentToken) external onlyRole
 (GOVERNANCE) {
 if (address(_newPaymentToken) == address(0)) {
 revert AuctionModule_InvalidZeroAddress(0);
 }
++ if (paymentToken.balanceOf(address(safetyModule)) > 0) revert();
 emit PaymentTokenChanged(address(paymentToken), address
 (_newPaymentToken));
 paymentToken = _newPaymentToken;
 }

[L-07] Malfunction within the auctions if
there are multiple staked tokens with the
same underlying token

The underlying token of the safed token is used in Auctions to be
auctioned in case of insolvency. The buyer of the Auction purchases
underlying tokens in lots, and what remains unsold is returned to the safed
token . The problem arises when there are safed tokens that use the same
underlying token and are auctioned simultaneously. This situation can lead to
malfunctions in the Auctions, causing instability within the protocol.

The following test demonstrates the problem:

1. There are safedToken1 and safedToken3 that use the same underlying .
2. Governance initiates a slash and starts an auction of safedToken1 using the

function SafetyModule::slashAndStartAuction , transferring 50e18
underlying tokens to the AuctionModule .

3. Governance initiates a slash and starts an auction of safedToken3 ,
transferring 100e18 underlying tokens .

4. Buyers purchase some lots of underlying tokens.
5. Governance decides to terminate the first auction using the function

SafetyModule::terminateAuction , which calls
AuctionModule::_completeAuction . This function sends the entire balance
of underlying tokens to the staked token AuctionModule#365 , causing the
auction that remains active (step 3) to run out of tokens to pay buyers.

39

File: AuctionModule.sol
361: function _completeAuction
 (uint256 _auctionId, bool _terminatedEarly) internal {
...
365: uint256 remainingBalance = auctionToken.balanceOf(address(this));
...
...
377: // Notify SafetyModule if necessary
378: if (!_terminatedEarly) {
379: safetyModule.auctionEnded(_auctionId, remainingBalance);
380: }
...
...
390: }

In the end, safedToken1 will obtain underlying tokens that were reserved for
the active auction (step 3) that is still active.

There is a possibility for safedTokens to share the same underlying since there
are no restrictions in the code. Moreover, having safed tokens with the same
underlying but different parameters, such as unstake cool-down or different
exchange rates, can incentivize staked token holders.

40

// Filename: test/unit/SafetyModuleTest.sol:SafetyModuleTest
 function test_StakedTokenUsingSameUnderlyingWillbreakAuctions() public {
 //
 // 1. Deploy a third staked token which uses the same underlying token
 // than `stakedToken1`
 StakedToken stakedToken3 = new StakedToken(

 rewardsToken, safetyModule, COOLDOWN_SECONDS, UNSTAKE_WINDOW,
);
 //
 // 2. Add the third staked token to the safety module and
 // `liquidityProviderTwo` stakes `10_000e18` tokens
 safetyModule.addStakedToken(stakedToken3);
 rewardsToken.transfer(liquidityProviderTwo, 10_000 ether);
 vm.prank(liquidityProviderTwo);
 rewardsToken.approve(address(stakedToken3), type(uint256).max);
 _stake(stakedToken3, liquidityProviderTwo, 10_000 ether);
 //
 // 3. An auction is initiated to the `stakedToken1`
 uint128 lotPrice = 1e18;
 uint128 initialLotSize = 10e18;
 uint96 lotIncreaseIncrement = 1e17;
 uint16 lotIncreasePeriod = 1 hours;
 uint8 numLots = 5;
 uint64 slashPercent = 1e16;
 uint32 timeLimit = 10 days;
 assertEq(stakedToken1.getUnderlyingToken().balanceOf(address
 (auctionModule)), 0);
 uint256 auctionIdStakedToken1 = _startAndCheckAuction(
 stakedToken1,
 numLots,
 lotPrice,
 initialLotSize,
 slashPercent,
 lotIncreaseIncrement,
 lotIncreasePeriod,
 timeLimit
);
 assertEq(stakedToken1.getUnderlyingToken().balanceOf(address
 //(auctionModule)), 50e18); // AuctionModule has 50e18 underlying tokens
 //
 // 4. Another auction is initiated to the `stakedToken3`. `100e18` will
 // be slashed from `stakedToken3` and it will be transferred to AuctionModule
 uint256 auctionIdStakedToken3 = _startAndCheckAuction(
 stakedToken3,
 numLots,
 lotPrice,
 initialLotSize,
 slashPercent,
 lotIncreaseIncrement,
 lotIncreasePeriod,
 timeLimit
);

 assertEq
 //(underLyingAfterStakedToken3IsAuctioned, 50e18 + 100e18); // 50e18 from sta
 //
 // 5. Someone buys one lot from stakedToken1 and the payment token
 // balance is now on AuctionModule
 address buyer = address(1337);
 _dealAndBuyLots(buyer, auctionIdStakedToken1, 1, lotPrice);
 assertEq(auctionModule.paymentToken().balanceOf(address
 (auctionModule)), 1e18);
 assertEq(stakedToken1.getUnderlyingToken().balanceOf
 //(buyer), 10e18); // buyer receive 10e18 underlying tokens
 //
 // 6. Someone buys one lot from stakedToken3 and the payment token is

41

 // added to the AuctionModule balance. Now there are 2e18 payment token balanc
 _dealAndBuyLots(buyer, auctionIdStakedToken3, 1, lotPrice);
 assertEq(auctionModule.paymentToken().balanceOf(address
 (auctionModule)), 2e18);
 assertEq(stakedToken1.getUnderlyingToken().balanceOf
 //(buyer), 20e18); // buyer receives another 10e18 underlying tokens
 //
 // 7. Governance terminates the auctionIdStakedToken1 and all the
 // remaining underlying is transferred to stakedToken1
 // That is incorrect because the auctionStakedToken3 is still active and
 // now there are not underlying tokens in
 // the auctionModule contract

 safetyModule.terminateAuction(auctionIdStakedToken1);
 assertGt(stakedToken1.getUnderlyingToken().balanceOf(address
 //(stakedToken1)), balanceUnderlyingBeforeAuctionends); // currentUnderLyingBa
 assertEq(stakedToken1.getUnderlyingToken().balanceOf(address
 //(auctionModule)), 0); // now there is zero undelying balance on AuctionModul
 assertEq(stakedToken3.getUnderlyingToken().balanceOf(address
 //(auctionModule)), 0); // now there is zero undelying balance on AuctionModul
 }

As a result, underlying tokens can be lost for active auctions.

The recommendation is to fix the Auction process to avoid using underlying
tokens reserved for active Auctions. Alternatively, steps can be taken to
prevent the existence of staked tokens with the same underlying token.

[L-08] Stakers affected by some
modifications

Stakers receive rewards based on the calculation in
SMRewardDistributor::computeRewardMultiplier . This function takes into
account the values of _smoothingValue or _maxRewardMultiplier . When a
user calls the RewardsDistributor::claimRewardsFor function, it invokes
SMRewardDistributor::_accrueRewards , where the corresponding rewards for
the user are calculated (code lines 340 and 357-359).

42

File: SMRewardDistributor.sol
328: function _accrueRewards
 (address market, address user) internal virtual override {
...
...
340: uint256 rewardMultiplier = computeRewardMultiplier(user, market);
341: uint256 numTokens = rewardTokens.length;
342: for (uint256 i; i < numTokens;) {
...
...
357: uint256 newRewards = userPosition.mul(
358:
 _cumulativeRewardPerLpToken[token][market] - _cumulativeRewardPerLp
359:).mul(rewardMultiplier);
...
...
381: }
382: }

The problem arises when the governance makes modifications to
_smoothingValue or _maxRewardMultiplier using the functions
SMRewardDistributor::setMaxRewardMultiplier and
SMRewardDistributor::setSmoothingValue . These modifications retroactively
affect users. In other words, if a user has been staking, and _smoothingValue is
increased, the user will receive fewer rewards. Consider the following
scenario:

1. UserA stakes 100e18 tokens and continues staking for 10 days without
calling RewardsDistributor::claimRewardsFor .

2. The function SMRewardDistributor::computeRewardMultiplier returns a
multiplier, for example, 5e18 . However, for various reasons, the user does
not claim the rewards.

3. The governance increases the _smoothingValue , and now
SMRewardDistributor::computeRewardMultiplier returns a multiplier of
2e18 . The user will now receive fewer rewards compared to step 2 when
claimed.

As evident, modifications to _smoothingValue or _maxRewardMultiplier
affect users who have been staking. On the other hand, a malicious user could
frontrun these modifications and claim the corresponding rewards before they
are reduced, obtaining more rewards than users who have not claimed yet.

I conducted a test that demonstrates how an increase in _smoothingValue
affects the calculation of SMRewardDistributor::computeRewardMultiplier :

43

// Filename: test/unit/SafetyModuleTest.sol:SafetyModuleTest
 // $ forge test --match-test "test_RewardMultiplierIsModifiedRetroactively"
 // -vvv
 function test_RewardMultiplierIsModifiedRetroactively() public {
 //
 // 1. User stakes 100 ether and the computeRewardMultiplier is 1e18.
 // smoothing value of 30 and max multiplier of 4
 _stake(stakedToken1, liquidityProviderTwo, 100 ether);
 assertEq(
 rewardDistributor.computeRewardMultiplier
 (liquidityProviderTwo, address(stakedToken1)),
 1e18,
 "Reward multiplier mismatch after initial stake"
);
 //
 // 2. Time passes 2 days and computeRewardMultiplier=1.5e18
 skip(2 days);
 assertEq(
 rewardDistributor.computeRewardMultiplier
 (liquidityProviderTwo, address(stakedToken1)),
 1.5e18,
 "Reward multiplier mismatch after 2 days"
);
 //
 // 3. Gov increase the smothing value reducing the
 // computeRewardMultiplier
 rewardDistributor.setSmoothingValue(60e18);
 assertLt(
 rewardDistributor.computeRewardMultiplier
 (liquidityProviderTwo, address(stakedToken1)),
 1.5e18
); // computeMultiplier < 1.5e18
 }

It may affect the amount of rewards a user can obtain and a malicious user can
anticipate before modifications are executed, consequently gaining more
rewards than the users who do not claim rewards before the modifications of
_smoothingValue or _maxRewardMultiplier . It is necessary for the
governance to modify _smoothingValue or _maxRewardMultiplier ; however,
this is possible as the functions are designed to make such changes.

If _smoothingValue or _maxRewardMultiplier are modified, these
modifications should be applied to new stakings. Users who have been staking
and have not claimed their rewards should obtain rewards using the previous
_smoothingValue or _maxRewardMultiplier .

[L-09] Attacker can grief whale stakers with
dust transfer

A cap for the stake amount is implemented in StakedToken to keep staked
amount for each user to be within maxStakeAmount . A revert will occur for

44

stake() when the total staked amount for the user exceeds maxStakeAmount .

An attacker can exploit that and grief whale stakers that wish to stake the full
maxStakeAmount . The attack can be conducted by frontrunning the whale
staker's stake() transaction with a dust transfer, causing it to exceed
maxStakeAmount and fail.

function _stake
 (address from, address to, uint256 amount) internal whenNotPaused {
 if (amount == 0) revert StakedToken_InvalidZeroAmount();
 if (exchangeRate == 0) revert StakedToken_ZeroExchangeRate();

 if (isInPostSlashingState) {
 revert StakedToken_StakingDisabledInPostSlashingState();
 }

 // Make sure the user's stake balance doesn't exceed the max stake
 // amount
 uint256 stakeAmount = previewStake(amount);
 uint256 balanceOfUser = balanceOf(to);

 //@audit this can be used to grief a whale staker by transferring dust
 // token to the account
 if (balanceOfUser + stakeAmount > maxStakeAmount) {
 revert StakedToken_AboveMaxStakeAmount
 (maxStakeAmount, maxStakeAmount - balanceOfUser);
 }

 // Update cooldown timestamp
 _stakersCooldowns[to] = getNextCooldownTimestamp
 (0, stakeAmount, to, balanceOfUser);

 // Mint staked tokens
 _mint(to, stakeAmount);

 // Transfer underlying tokens from the sender
 UNDERLYING_TOKEN.safeTransferFrom(from, address(this), amount);

 // Update user's position and rewards in the SafetyModule
 smRewardDistributor.updatePosition(address(this), to);

 emit Staked(from, to, amount);
 }

When the total stake amount exceeds the maxStakeAmount , instead of
reverting, consider reducing the amount to stake so that the total stake amount
is kept within maxStakeAmount .

[L-10] Missing check in addRewardToken()
could cause excess rewards accrual

45

RewardDistributor.addRewardToken() is called by governance to add new
reward tokens and parameters for the specified markets. This is used to
determine the amount of reward tokens to be distributed to the markets.

However, addRewardToken() fails to check if the reward token to be added has
already existed. If the governance accidentally added a duplicate reward token,
it could distribute more rewards than intended to the market.

46

function addRewardToken(
 address _rewardToken,
 uint88 _initialInflationRate,
 uint88 _initialReductionFactor,
 address[] calldata _markets,
 uint256[] calldata _marketWeights
) external onlyRole(GOVERNANCE) {
 if (_initialInflationRate > MAX_INFLATION_RATE) {
 revert RewardController_AboveMaxInflationRate
 (_initialInflationRate, MAX_INFLATION_RATE);
 }
 if (MIN_REDUCTION_FACTOR > _initialReductionFactor) {
 revert RewardController_BelowMinReductionFactor
 (_initialReductionFactor, MIN_REDUCTION_FACTOR);
 }
 if (_marketWeights.length != _markets.length) {
 revert RewardController_IncorrectWeightsCount
 (_marketWeights.length, _markets.length);
 }
 if (rewardTokens.length >= MAX_REWARD_TOKENS) {
 revert RewardController_AboveMaxRewardTokens(MAX_REWARD_TOKENS);
 }
 // Validate weights
 uint256 totalWeight;
 uint256 numMarkets = _markets.length;
 for (uint256 i; i < numMarkets;) {
 address market = _markets[i];
 _updateMarketRewards(market);
 uint256 weight = _marketWeights[i];
 if (weight == 0) {
 unchecked {
 ++i; // saves 63 gas per iteration
 }
 continue;
 }
 if (weight > MAX_BASIS_POINTS) {
 revert RewardController_WeightExceedsMax
 (weight, MAX_BASIS_POINTS);
 }
 totalWeight += weight;
 _marketWeightsByToken[_rewardToken][market] = weight;
 emit NewWeight(market, _rewardToken, weight);
 unchecked {
 ++i; // saves 63 gas per iteration
 }
 }
 if (totalWeight != MAX_BASIS_POINTS) {
 revert RewardController_IncorrectWeightsSum
 (totalWeight, MAX_BASIS_POINTS);
 }
 // Add reward token info
 rewardTokens.push(_rewardToken);
 _rewardInfoByToken[_rewardToken].token = IERC20Metadata(_rewardToken);
 _rewardInfoByToken[_rewardToken].initialTimestamp = uint80
 (block.timestamp);

 _rewardInfoByToken[_rewardToken].initialInflationRate = _initialInfla

 _rewardInfoByToken[_rewardToken].reductionFactor = _initialReductionF
 _rewardInfoByToken[_rewardToken].marketAddresses = _markets;

 emit RewardTokenAdded(
 _rewardToken,
 block.timestamp,
 _initialInflationRate,
 _initialReductionFactor

47

);
 }

Consider adding a check to verify that the reward token has not been added
yet.

[L-11] Additional parameter for
StakedToken::_redeem()

The function StakedToken::_redeem facilitates the redemption of staked
tokens for underlying tokens . However, an issue arises during the
transaction, as there may be a change in the exchange rate while there is a
redeem action in the process, resulting in redeemers receiving fewer
underlying tokens. Consider the following scenario:

1. A user stakes 10e18 underlying tokens and receives 10e18 staked tokens
(exchangeRate=1).

2. The user initiates the cooldown process and eventually calls the
StakedToken::redeem function.

3. Before step 2 is executed, there is a slash, and the exchange rate changes
to 0.7 . This transaction is executed before step 2 .

4. The transaction in step 2 is executed, redeeming 10e18 staked tokens ,
but the user receives 7e18 underlying tokens (previewRedeem = 10e18 *
0.7).

Ultimately, the user ends up with fewer underlying tokens than expected, a
result of factors that can occur on-chain.

It is recommended to add a parameter to the StakedToken::_redeem function
that allows the redeemer to specify the minimum amount of underlying
tokens they are willing to accept. This parameter would provide users with
more control over their redemption transactions and help mitigate the risk of
exchange rate fluctuations.

[L-12] Penalized users due to changes in
_earlyWithdrawalThreshold

Users may face unexpected penalties due to changes in the
_earlyWithdrawalThreshold variable. This variable is used to calculate

48

whether a penalty applies to users removing liquidity prematurely
PerpRewardDistributor#L132-L138 .

File: PerpRewardDistributor.sol
102: function updatePosition
 (address market, address user) external virtual override onlyClearingHouse {
...
...
129: if (newLpPosition < prevLpPosition) {
130: // Removed liquidity - need to check if within early
// withdrawal threshold
131:
 uint256 deltaTime = block.timestamp - _withdrawTimerStartByUserByMa
132: if (deltaTime < _earlyWithdrawalThreshold) {
133: // Early withdrawal - apply penalty
134: // Penalty is linearly proportional to the time
// remaining in the early withdrawal period
135: uint256 penalty = (newRewards *
 (_earlyWithdrawalThreshold - deltaTime)) / _earlyWithdrawalThreshold;
136: newRewards -= penalty;
137: emit EarlyWithdrawalPenaltyApplied
 (user, market, token, penalty);
138: }
139: }
...
...

Consider the following scenario:

1. _earlyWithdrawalThreshold=10 days . The user withdraws X tokens, and
_withdrawTimerStartByUserByMarket is recorded as block.timestamp .

2. 11 days pass, and the user decides to withdraw more tokens. At this point,
they can do so without any penalty because 11 days have passed < 10 days
earlyWithdrawalThreshold is false PerpRewardDistributor#L132 .

3. However, governance decides to change _earlyWithdrawalThreshold=15
days . This transaction is executed before step 2 .

4. Finally, the transaction in step 2 is executed, causing a penalty for the user
because 11 days have passed < 15 days _earlyWithdrawalThreshold is
true .

If a change in _earlyWithdrawalThreshold occurs, many users removing
liquidity may be affected.

It is recommended to consider allowing users to specify the amount they are
willing to pay as a penalty. This approach would provide users with more
control over their liquidity withdrawal transactions and mitigate the impact of
sudden changes in _earlyWithdrawalThreshold .

49

[L-13] _totalUnclaimedRewards not
decrementing case

The rewards token may be USDC , so there may be users who have staked
tokens and are blocked by the USDC contract, causing those rewards to be
unrecoverable by both the user and the protocol. This is because the function
RewardDistributor::_distributeRewards#L348 will always revert:

File: RewardDistributor.sol
343: function _distributeReward
 (address _token, address _to, uint256 _amount) internal returns (uint256) {
344: uint256 rewardsRemaining = _rewardTokenBalance(_token);
345: if (rewardsRemaining == 0) return _amount;
346: if (_amount <= rewardsRemaining) {
347: _totalUnclaimedRewards[_token] -= _amount;
348: IERC20Metadata(_token).safeTransferFrom
 (ecosystemReserve, _to, _amount);
349: return 0;
350: } else {
351: _totalUnclaimedRewards[_token] -= rewardsRemaining;
352: IERC20Metadata(_token).safeTransferFrom
 (ecosystemReserve, _to, rewardsRemaining);
353: return _amount - rewardsRemaining;
354: }
355: }

Therefore, _totalUnclaimedRewards will never be decremented and will never
be zero since the rewards assigned to that blocked user cannot be transferred.

It is advisable to perhaps have an admin function to adjust the
_totalUnclaimedRewards according to those rewards that were not delivered
due to user blockages in USDC , and these rewards should not necessarily be in
ecosystemReserve .

50

