
 Increment Finance: Increment 

 Protocol 
 Fix Review 

 November 10, 2022 

 Prepared for: 

 Increment Finance 

 Prepared by:  Anish Naik, Justin Jacob, and Vara Prasad  Bandaru 



 About Trail of Bits 

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security 
 assessment and advisory services to some of the world’s most targeted organizations. We 
 combine high- end security research with a real -world attacker mentality to reduce risk and 
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software 
 elements that support billions of end users, including Kubernetes and the Linux kernel. 

 We maintain an exhaustive list of publications at  https://github.com/trailofbits/publications  , 
 with links to papers, presentations, public audit reports, and podcast appearances. 

 In recent years, Trail of Bits consultants have showcased cutting-edge research through 
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec, 
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon. 

 We specialize in software testing and code review projects, supporting client organizations 
 in the technology, defense, and finance industries, as well as government entities. Notable 
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom. 

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable 
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0, 
 MakerDAO, Matic, Uniswap, Web3, and Zcash. 

 To keep up to date with our latest news and announcements, please follow  @trailofbits  on 
 Twitter and explore our public repositories at  https://github.com/trailofbits  .  To engage us 
 directly, visit our “Contact” page at  https://www.trailofbits.com/contact  ,  or email us at 
 info@trailofbits.com  . 

 Trail of Bits, Inc. 
 228 Park Ave S #80688 
 New York, NY 10003 
 https://www.trailofbits.com 
 info@trailofbits.com 

 Trail of Bits  1  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


 Notices and Remarks 

 Copyright and Distribution 
 © 2022 by Trail of Bits, Inc. 

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this 
 report in the United Kingdom. 

 This report is considered by Trail of Bits to be public information;  it is licensed to Increment 
 Finance under the terms of the project statement of work and has been made public at 
 Increment Finance’s request.  Material within this  report may not be reproduced or 
 distributed in part or in whole without the express written permission of Trail of Bits. 

 Test Coverage Disclaimer 
 All activities undertaken by Trail of Bits in association with this project were performed in 
 accordance with a statement of work and agreed upon project plan. 

 Security assessment projects are time-boxed and often reliant on information that may be 
 provided by a client, its affiliates, or its partners. As a result, the findings documented in 
 this report should not be considered a comprehensive list of security issues, flaws, or 
 defects in the target system or codebase. 

 Trail of Bits uses automated testing techniques to rapidly test the controls and security 
 properties of software. These techniques augment our manual security review work, but 
 each has its limitations: for example, a tool may not generate a random edge case that 
 violates a property or may not fully complete its analysis during the allotted time. Their use 
 is also limited by the time and resource constraints of a project. 

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues 
 identified in the original report. This work involves a review of specific areas of the source 
 code and system configuration, not comprehensive analysis of the system. 

 Trail of Bits  2  Increment Protocol Fix Review 
 PUBLIC 



 Table of Contents 

 About Trail of Bits  1 

 Notices and Remarks  2 

 Table of Contents  3 

 Executive Summary  5 

 Project Summary  7 

 Project Methodology  8 

 Project Targets  9 

 Summary of Fix Review Results  10 

 Detailed Fix Review Results  12 

 1. Governance role is a single point of failure  12 

 2. Inconsistent lower bounds on collateral weights  14 

 3. Solidity compiler optimizations can be problematic  16 

 4. Support for multiple reserve tokens allows for arbitrage  17 

 5. Ownership transfers can be front-run  19 

 6. Funding payments are made in the wrong token  20 

 7. Excessive dust collection may lead to premature closures of long positions  22 

 8. Problematic use of primitive operations on fixed-point integers  24 

 9. Liquidations are vulnerable to sandwich attacks  27 

 10. Accuracy of market and oracle TWAPs is tied to the frequency of user 
 interactions  29 

 11. Liquidations of short positions may fail because of insufficient dust collection  30 

 12. Project dependencies contain vulnerabilities  33 

 13. Risks associated with oracle outages  34 

 Trail of Bits  3  Increment Protocol Fix Review 
 PUBLIC 



 A. Status Categories  35 

 B. Vulnerability Categories  36 

 Trail of Bits  4  Increment Protocol Fix Review 
 PUBLIC 



 Executive Summary 

 Engagement Overview 
 Increment Finance engaged Trail of Bits to review the security of its Increment Protocol. 
 From August 22 to September 2, 2022, a team of two consultants conducted a security 
 review of the client-provided source code, with four person-weeks of effort. Details of the 
 project’s  scope,  timeline, test targets, and coverage  are provided in the  original audit 
 report. 

 Increment Finance contracted Trail of Bits to review the fixes implemented for issues 
 identified in the original report. On October 25, 2022, one consultant conducted a review of 
 the client-provided source code, with four person-hours of effort. 

 Summary of Findings 
 The original audit uncovered significant flaws that could impact system confidentiality, 
 integrity, or availability. A summary of the  original  findings is provided below. 

 EXPOSURE ANALYSIS 

 Severity  Count 

 High  3 

 Medium  3 

 Low  2 

 Informational  5 

 Undetermined  0 

 CATEGORY BREAKDOWN 

 Category  Count 

 Access Controls  1 

 Configuration  1 

 Data Validation  5 

 Patching  1 

 Timing  2 

 Undefined Behavior  3 

 Trail of Bits  5  Increment Protocol Fix Review 
 PUBLIC 



 Overview of Fix Review Results 
 Increment Finance has sufficiently addressed most of the issues described in the original 
 audit report. 

 Trail of Bits  6  Increment Protocol Fix Review 
 PUBLIC 



 Project Summary 

 Contact Information 
 The following managers were associated with this project: 

 Dan Guido  , Account Manager  Anne Marie Barry  , Project  Manager 
 dan@trailofbits.com  annemarie.barry@trailofbits.com 

 The following engineers were associated with this project: 

 Anish Naik  , Consultant  Justin Jacob  , Consultant 
 anish.naik@trailofbits.com  justin.jacob@trailofbits.com 

 Vara Prasad Bandaru  , Consultant 
 vara.bandaru@trailofbits.com 

 Project Timeline 
 The significant events and milestones of the project are listed below. 

 Date  Event 

 August 18, 2022  Pre-project kickoff call 

 August 26, 2022  Status update meeting #1 

 September 2, 2022  Report readout meeting and delivery  of report draft 

 November 10, 2022  Delivery of final report and fix  review 

 Trail of Bits  7  Increment Protocol Fix Review 
 PUBLIC 

mailto:dan@trailofbits.com
mailto:justin.jacob@trailofbits.com


 Project Methodology 

 Our work in the fix review included the following: 

 ●  A review of the findings in the original audit report 

 ●  A manual review of the client-provided source code and configuration material 

 ●  A review of the documentation provided alongside the codebase 

 Trail of Bits  8  Increment Protocol Fix Review 
 PUBLIC 



 Project Targets 

 The engagement involved a review of the fixes implemented in the following target. 

 Increment Protocol 

 Repository  https://github.com/Increment-Finance/increment-protocol 

 Version  9368b23ac2d2f5dc954cc849d20cdeca21d627c6 

 Type  Solidity 

 Platform  zkSync 

 Trail of Bits  9  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol


 Summary of Fix Review Results 

 The table below summarizes each of the original findings and indicates whether the issue 
 has been sufficiently resolved. 

 ID  Title  Status 

 1  Governance role is a single point of failure  Partially 
 Resolved 

 2  Inconsistent lower bounds on collateral weights  Resolved 

 3  Solidity compiler optimizations can be problematic  Unresolved 

 4  Support for multiple reserve tokens allows for arbitrage  Unresolved 

 5  Ownership transfers can be front-run  Resolved 

 6  Funding payments are made in the wrong token  Resolved 

 7  Excessive dust collection may lead to premature closures of long 
 positions 

 Resolved 

 8  Problematic use of primitive operations on fixed-point integers  Resolved 

 9  Liquidations are vulnerable to sandwich attacks  Resolved 

 10  Accuracy of market and oracle TWAPs is tied to the frequency of user 
 interactions 

 Resolved 

 11  Liquidations of short positions may fail because of insufficient dust 
 collection 

 Resolved 

 12  Project dependencies contain vulnerabilities  Resolved 

 Trail of Bits  10  Increment Protocol Fix Review 
 PUBLIC 



 13  Risks associated with oracle outages  Unresolved 

 Trail of Bits  11  Increment Protocol Fix Review 
 PUBLIC 



 Detailed Fix Review Results 

 1. Governance role is a single point of failure 

 Status:  Partially Resolved 

 Severity:  High  Difficulty:  High 

 Type: Access Controls  Finding ID: TOB-INC-1 

 Target: Governance role 

 Description 
 Because the governance role is centralized and responsible for critical functionalities, it 
 constitutes a single point of failure within the Increment Protocol. 

 The role can perform the following privileged operations: 

 ●  Whitelisting a perpetual market 

 ●  Setting economic parameters 

 ●  Updating price oracle addresses and setting fixed prices for assets 

 ●  Managing protocol insurance funds 

 ●  Updating the addresses of core contracts 

 ●  Adding support for new reserve tokens to the  UA  contract 

 ●  Pausing and unpausing protocol operations 

 These privileges give governance complete control over the protocol and therefore access 
 to user and protocol funds. This increases the likelihood that the governance account will 
 be targeted by an attacker and incentivizes governance to act maliciously. 

 Note, though, that the governance role is currently controlled by a multisignature wallet (a 
 multisig) and that control may be transferred to a decentralized autonomous organization 
 (DAO) in the future. 

 Trail of Bits  12  Increment Protocol Fix Review 
 PUBLIC 



 Fix Analysis 
 This issue has been  partially resolved  . The Increment  Finance team minimized the 
 privileges of the governance role by removing its ability to update core contract addresses 
 (i.e., allowing it to set those addresses only once). No other privileges were removed. 

 Trail of Bits  13  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/pull/490


 2. Inconsistent lower bounds on collateral weights 

 Status:  Resolved 

 Severity:  Medium  Difficulty:  High 

 Type: Data Validation  Finding ID: TOB-INC-2 

 Target:  contracts/Vault.sol 

 Description 
 The lower bound on a collateral asset’s initial weight (when the collateral is first whitelisted) 
 is different from that enforced if the weight is updated; this discrepancy increases the 
 likelihood of collateral seizures by liquidators. 

 A collateral asset’s weight represents the level of risk associated with accepting that asset 
 as collateral. This risk calculation comes into play when the protocol is assessing whether a 
 liquidator can seize a user’s non-UA collateral. To determine the value of each collateral 
 asset, the protocol multiplies the user’s balance of that asset by the collateral weight (a 
 percentage). A riskier asset will have a lower weight and thus a lower value. If the total 
 value of a user’s non-UA collateral is less than the user’s UA debt, a liquidator can seize the 
 collateral. 

 When whitelisting a collateral asset, the  Perpetual.addWhiteListedCollateral 
 function requires the collateral weight to be between 10% and 100% (figure 2.1). According 
 to the documentation, these are the correct bounds for a collateral asset’s weight. 

 function  addWhiteListedCollateral  ( 
 IERC20Metadata  asset, 
 uint256  weight  , 
 uint256  maxAmount 

 )  public  override  onlyRole(GOVERNANCE)  { 
 if  (weight  <  1e17)  revert  Vault_InsufficientCollateralWeight(); 
 if  (weight  >  1e18)  revert  Vault_ExcessiveCollateralWeight(); 
 [...] 

 } 

 Figure 2.1: A snippet of the  addWhiteListedCollateral  function in  Vault.sol#L224-230 

 However, governance can choose to update that weight via a call to 
 Perpetual.changeCollateralWeight  , which allows the  weight to be between 1% and 
 100% (figure 2.2). 

 Trail of Bits  14  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/3b07167993375160caaaec4fbeecba5e70756b2d/contracts/Vault.sol#L224-L230


 function  changeCollateralWeight  (IERC20Metadata  asset,  uint256  newWeight  )  external 
 override  onlyRole(GOVERNANCE)  { 

 uint256  tokenIdx  =  tokenToCollateralIdx[asset]; 
 if  (!((tokenIdx  !=  0  )  ||  (  address  (asset)  ==  address  (UA))))  revert 

 Vault_UnsupportedCollateral(); 

 if  (newWeight  <  1e16)  revert  Vault_InsufficientCollateralWeight(); 
 if  (newWeight  >  1e18)  revert  Vault_ExcessiveCollateralWeight(); 
 [...] 

 } 

 Figure 2.2: A snippet of the  changeCollateralWeight  function in  Vault.sol#L254-259 

 If the weight of a collateral asset were mistakenly set to less than 10%, the value of that 
 collateral would decrease, thereby increasing the likelihood of seizures of non-UA 
 collateral. 

 Fix Analysis 
 This issue has been  resolved  . The protocol now enforces  the same lower bound when 
 setting and updating a collateral asset’s weight. 

 Trail of Bits  15  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/3b07167993375160caaaec4fbeecba5e70756b2d/contracts/Vault.sol#L254-L259
https://github.com/Increment-Finance/increment-protocol/pull/469


 3. Solidity compiler optimizations can be problematic 

 Status:  Unresolved 

 Severity:  Informational  Difficulty:  High 

 Type: Undefined Behavior  Finding ID: TOB-INC-3 

 Target: Increment Protocol 

 Description 
 The Increment Protocol contracts have enabled optional compiler optimizations in Solidity. 

 There have been several optimization bugs with security implications. Moreover, 
 optimizations are  actively being developed  . Solidity  compiler optimizations are disabled by 
 default, and it is unclear how many contracts in the wild actually use them. Therefore, it is 
 unclear how well they are being tested and exercised. 

 Security issues due to optimization bugs  have occurred  in the past  . A medium- to 
 high-severity bug in the Yul optimizer was introduced in Solidity version 0.8.13 and was 
 fixed only recently,  in Solidity version 0.8.17  . Another  medium-severity optimization 
 bug—one that caused  memory writes in inline assembly  blocks to be removed under 
 certain conditions  —was patched in Solidity 0.8.15. 

 A  compiler audit of Solidity  from November 2018 concluded  that  the optional optimizations 
 may not be safe  . 

 It is likely that there are latent bugs related to optimization and that new bugs will be 
 introduced due to future optimizations. 

 Fix Analysis 
 This issue has not been resolved. The Increment Finance team is willing to accept the risk of 
 optimization-related bugs. The team provided the following additional context: “We are 
 aware of the risk associated with using an untested compiler and plan to limit the risk using 
 the principles of a  protected launch  .” 

 Trail of Bits  16  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/ethereum/solidity/pull/13535
https://docs.soliditylang.org/en/latest/bugs.html
https://blog.soliditylang.org/2022/09/08/storage-write-removal-before-conditional-termination/
https://blog.soliditylang.org/2022/06/15/inline-assembly-memory-side-effects-bug/
https://blog.soliditylang.org/2022/06/15/inline-assembly-memory-side-effects-bug/
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://medium.com/electric-capital/derisking-defi-guarded-launches-2600ce730e0a#:~:text=Guarded%20Launches:%20Protecting%20Users%20with%20Limits&text=A%20new%20contract%20is%20deployed,product%20in%20a%20limited%20scope


 4. Support for multiple reserve tokens allows for arbitrage 

 Status:  Unresolved 

 Severity:  Informational  Difficulty:  Low 

 Type: Undefined Behavior  Finding ID: TOB-INC-4 

 Target:  contracts/tokens/UA.sol 

 Description 
 Because the  UA  token contract supports multiple reserve  tokens, it can be used to swap 
 one reserve token for another at a ratio of 1:1. This creates an arbitrage opportunity, as it 
 enables users to swap reserve tokens with different prices. 

 Users can deposit supported reserve tokens in the  UA  contract in exchange for UA tokens 
 at a 1:1 ratio (figure 4.1). 

 function  mintWithReserve  (  uint256  tokenIdx  ,  uint256  amount  )  external  override  { 
 // Check that the reserve token is supported 
 if  (tokenIdx  >  reserveTokens.length  -  1  )  revert  UA_InvalidReserveTokenIndex(); 
 ReserveToken  memory  reserveToken  =  reserveTokens[tokenIdx]; 

 // Check that the cap of the reserve token isn't  reached 
 uint256  wadAmount  =  LibReserve.tokenToWad(reserveToken.asset.decimals(), 

 amount); 
 if  (reserveToken.currentReserves  +  wadAmount  >  reserveToken.mintCap)  revert 

 UA_ExcessiveTokenMintCapReached(); 

 _mint(  msg.sender  ,  wadAmount); 
 reserveTokens[tokenIdx].currentReserves  +=  wadAmount; 

 reserveToken.asset.safeTransferFrom(  msg.sender  ,  address  (  this  ),  amount); 
 } 

 Figure 4.1: The  mintWithReserve  function in  UA.sol#L38-51 

 Similarly, users can withdraw the amount of a deposit by returning their UA in exchange for 
 any supported reserve token, also at a 1:1 ratio (figure 4.2). 

 function  withdraw  (  uint256  tokenIdx  ,  uint256  amount  )  external  override  { 
 // Check that the reserve token is supported 
 if  (tokenIdx  >  reserveTokens.length  -  1  )  revert  UA_InvalidReserveTokenIndex(); 
 IERC20Metadata  reserveTokenAsset  =  reserveTokens[tokenIdx].asset; 

 Trail of Bits  17  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/main/contracts/tokens/UA.sol#L38-L51


 _burn(  msg.sender  ,  amount); 
 reserveTokens[tokenIdx].currentReserves  -=  amount; 

 uint256  tokenAmount  =  LibReserve.wadToToken(reserveTokenAsset.decimals(), 
 amount); 

 reserveTokenAsset.safeTransfer(  msg.sender  ,  tokenAmount); 
 } 

 Figure 4.2: The  withdraw  function in  UA.sol#L56-66 

 Thus, a user could mint UA by depositing a less valuable reserve token and then withdraw 
 the same amount of a more valuable token in one transaction, engaging in arbitrage. 

 Fix Analysis 
 This issue has not been resolved. The Increment Finance team is aware of the arbitrage 
 opportunity and does not plan on mitigating it, as mitigation could increase the code’s 
 complexity. 

 Trail of Bits  18  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/main/contracts/tokens/UA.sol#L56-L66


 5. Ownership transfers can be front-run 

 Status:  Resolved 

 Severity:  High  Difficulty:  High 

 Type: Timing  Finding ID: TOB-INC-5 

 Target:  contracts/utils/PerpOwnable.sol 

 Description 
 The  PerpOwnable  contract provides an access control  mechanism for the minting and 
 burning of a  Perpetual  contract’s vBase or vQuote  tokens. The owner of these token 
 contracts is set via the  transferPerpOwner  function,  which assigns the owner’s address 
 to the  perp  state variable. This function is designed  to be called only once, during 
 deployment, to set the  Perpetual  contract as the owner  of the tokens. Then, as the 
 tokens’ owner, the  Perpetual  contract can mint / burn  tokens during liquidity provisions, 
 trades, and liquidations. However, because the function is external, anyone can call it to set 
 his or her own malicious address as  perp  , taking ownership  of a contract’s vBase or vQuote 
 tokens. 

 function  transferPerpOwner  (  address  recipient  )  external  { 
 if  (recipient  ==  address  (  0  ))  revert  PerpOwnable_TransferZeroAddress(); 
 if  (perp  !=  address  (  0  ))  revert  PerpOwnable_OwnershipAlreadyClaimed(); 

 perp  =  recipient; 
 emit  PerpOwnerTransferred(  msg.sender  ,  recipient); 

 } 

 Figure 5.1:  The  transferPerpOwner  function in  PerpOwnable.sol#L29-L35 

 If the call were front-run, the  Perpetual  contract  would not own the vBase or vQuote 
 tokens, and any attempts to mint / burn tokens would revert. Since all user interactions 
 require the minting or burning of tokens, no liquidity provisions, trades, or liquidations 
 would be possible; the market would be effectively unusable. An attacker could launch 
 such an attack upon every perpetual market deployment to cause a denial of service (DoS). 

 Fix Analysis 
 This issue has been  resolved  . The  transferPerpOwner  function can now be called by only 
 the deployer of a given  Perpetual  contract. 

 Trail of Bits  19  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/utils/PerpOwnable.sol#L29-L35
https://github.com/Increment-Finance/increment-protocol/pull/470


 6. Funding payments are made in the wrong token 

 Status:  Resolved 

 Severity:  High  Difficulty:  Low 

 Type: Data Validation  Finding ID: TOB-INC-6 

 Target:  contracts/ClearingHouse.sol 

 Description 
 The funding payments owed to users are made in vBase instead of UA tokens; this results 
 in incorrect  calculations of users’ profit-and-loss  (PnL) values, an increased risk of 
 liquidations, and a delay in the convergence of a  Perpetual  contract’s value with that of 
 the underlying base asset. 

 When the protocol executes a trade or liquidity provision, one of its first steps is settling 
 the funding payments that are due to the calling user. To do that, it calls the 
 _settleUserFundingPayments  function in the  ClearingHouse  contract (figure 6.1). The 
 function sums the funding payments due to the user (as a trader and / or a liquidity 
 provider) across all perpetual markets. Once the function has determined the final funding 
 payment due to the user (  fundingPayments  ), the  Vault  contract’s  settlePnL  function 
 changes the UA balance of the user. 

 function  _settleUserFundingPayments(  address  account)  internal  { 
 int256  fundingPayments; 
 uint256  numMarkets = getNumMarkets(); 
 for  (  uint256  i =  0  ; i < numMarkets; ) { 

 fundingPayments += perpetuals[i].settleTrader(account)  + 
 perpetuals[i].settleLp(account); 

 unchecked  { 
 ++i; 

 } 
 } 

 if  (fundingPayments !=  0  ) { 
 vault.settlePnL(account, fundingPayments); 

 } 
 } 

 Figure 6.1: The  _settleUserFundingPayments  function  in  ClearingHouse.sol#L637-651 

 Trail of Bits  20  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/ClearingHouse.sol#L637-L651


 Both the  Perpetual.settleTrader  and  Perpetual.settleLp  functions internally call 
 _getFundingPayments  to calculate the funding payment due to the user for a given 
 market (figure 6.2). 

 function  _getFundingPayments( 
 bool  isLong, 
 int256  userCumFundingRate, 
 int256  globalCumFundingRate, 
 int256  vBaseAmountToSettle 

 )  internal  pure  returns  (  int256  upcomingFundingPayment)  { 
 [...] 
 if  (userCumFundingRate != globalCumFundingRate)  { 

 int256  upcomingFundingRate = isLong 
 ? userCumFundingRate - globalCumFundingRate 
 : globalCumFundingRate - userCumFundingRate; 

 // fundingPayments = fundingRate * vBaseAmountToSettle 
 upcomingFundingPayment = upcomingFundingRate.wadMul(vBaseAmountToSettle); 

 } 
 } 

 Figure 6.2: The  _getFundingPayments  function in  Perpetual.sol#L1152-1173 

 However, the  upcomingFundingPayment  value is expressed  in vBase, since it is the 
 product of a percentage, which is unitless, and a vBase token amount, 
 vBaseAmountToSettle  . Thus, the  fundingPayments  value  that is calculated in 
 _settleUserFundingPayments  is also expressed in vBase.  However, the  settlePnL 
 function internally updates the user’s balance of UA, not vBase. As a result, the user’s UA 
 balance will be incorrect, since the user’s profit or loss may be significantly higher or lower 
 than it should be. This discrepancy is a function of the price difference between the vBase 
 and UA tokens. 

 The use of vBase tokens for funding payments causes three issues. First, when withdrawing 
 UA tokens, the user may lose or gain much more than expected. Second, since the UA 
 balance affects the user’s collateral reserve total, the balance update may increase or 
 decrease the user’s risk of liquidation. Finally, since funding payments are not made in the 
 notional asset, the convergence between the mark and index prices may be delayed. 

 Fix Analysis 
 This issue has been  resolved  . The protocol now uses  the  vBase.indexPrice()  function to 
 convert vBase token amounts to UA  and thus makes funding  payments in UA instead of 
 vBase. 

 Trail of Bits  21  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1152-L1173
https://github.com/Increment-Finance/increment-protocol/pull/434


 7. Excessive dust collection may lead to premature closures of long positions 

 Status:  Resolved 

 Severity:  Medium  Difficulty:  Medium 

 Type: Data Validation  Finding ID: TOB-INC-7 

 Target:  contracts/Perpetual.sol 

 Description 
 The upper bound on the amount of funds considered dust by the protocol may lead to the 
 premature closure of long positions. 

 The protocol collects dust to encourage complete closures instead of closures that leave a 
 position with a small balance of vBase. One place that dust collection occurs is the 
 Perpetual  contract’s  _reducePositionOnMarket  function  (figure 7.1). 

 function  _reducePositionOnMarket  ( 
 LibPerpetual.TraderPosition  memory  user, 
 bool  isLong  , 
 uint256  proposedAmount  , 
 uint256  minAmount 

 ) 
 internal 
 returns  ( 

 int256  baseProceeds  , 
 int256  quoteProceeds  , 
 int256  addedOpenNotional  , 
 int256  pnl 

 ) 
 { 

 int256  positionSize  =  int256  (user.positionSize); 

 uint256  bought  ; 
 uint256  feePer  ; 
 if  (isLong)  { 

 quoteProceeds  =  -(proposedAmount.toInt256()); 
 (bought,  feePer)  =  _quoteForBase(proposedAmount,  minAmount); 
 baseProceeds  =  bought.toInt256(); 

 }  else  { 
 (bought,  feePer)  =  _baseForQuote(proposedAmount,  minAmount); 
 quoteProceeds  =  bought.toInt256(); 
 baseProceeds  =  -(proposedAmount.toInt256()); 

 } 

 Trail of Bits  22  Increment Protocol Fix Review 
 PUBLIC 



 int256  netPositionSize  =  baseProceeds  +  positionSize; 
 if  (netPositionSize  >  0  &&  netPositionSize  <=  1e17)  { 

 _donate(netPositionSize.toUint256()); 
 baseProceeds  -=  netPositionSize; 

 } 
 [...] 

 } 

 Figure 7.1: The  _reducePositionOnMarket  function in  Perpetual.sol#L876-921 

 If  netPositionSize  , which represents a user’s position  after its reduction, is between 0 
 and 1e17 (1/10 of an 18-decimal token), the system will treat the position as closed and 
 donate the dust to the insurance protocol. This will occur regardless of whether the user 
 intended to reduce, rather than fully close, the position. (Note that  netPositionSize  is 
 positive if the overall position is long. The dust collection mechanism used for short 
 positions is discussed in  TOB-INC-11  .) 

 However, if  netPositionSize  is tracking a high-value  token, the donation to  Insurance 
 will no longer be insignificant; 1/10 of 1 vBTC, for instance, would be worth ~USD 2,000 (at 
 the time of writing). Thus, the donation of a user’s vBTC dust (and the resultant closure of 
 the vBTC position) could prevent the user from profiting off of a ~USD 2,000 position. 

 Fix Analysis 
 This issue has been  resolved  . The Increment Finance  team updated the dust collection 
 mechanism, limiting the amount of dust collected from a position to USD 0.10. 

 Trail of Bits  23  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9f4af7aea63d637e842a1bc4314d00a13b58be24/contracts/Perpetual.sol#L876-L921
https://github.com/Increment-Finance/increment-protocol/pull/472


 8. Problematic use of primitive operations on fixed-point integers 

 Status:  Resolved 

 Severity:  Informational  Difficulty:  High 

 Type: Undefined Behavior  Finding ID: TOB-INC-8 

 Target:  lib/LibMath.sol 

 Description 
 The protocol’s use of primitive operations over fixed-point signed and unsigned integers 
 increases the risk of overflows and undefined behavior. 

 The Increment Protocol uses the  PRBMathSD59x18  and  PRBMathUD60x18  math libraries to 
 perform operations over 59x18 signed integers and 60x18 unsigned integers, respectively 
 (specifically to perform multiplication and division and to find their absolute values). These 
 libraries aid in calculations that involve percentages or ratios or require decimal precision. 

 When a smart contract system relies on primitive integers and fixed-point ones, it should 
 avoid arithmetic operations that involve the use of both types. For example, using 
 x.wadMul(y)  to multiply two fixed-point integers will  provide a different result than using 
 x * y  . For that reason, great care must be taken to  differentiate between variables that 
 are fixed-point and those that are not. Calculations involving fixed-point values should use 
 the provided library operations; calculations involving both fixed-point and primitive 
 integers should be avoided unless one type is converted to the other. 

 However, a number of multiplication and division operations in the codebase use both 
 primitive and fixed-point integers. These include those used to calculate the new 
 time-weighted average prices (TWAPs) of index and market prices (figure 8.1). 

 function  _updateTwap  ()  internal  { 
 uint256  currentTime  =  block.timestamp  ; 
 int256  timeElapsed  =  (currentTime  -  globalPosition.timeOfLastTrade).toInt256(); 

 /* 
 priceCumulative1 = priceCumulative0 + price1 * timeElapsed 

 */ 

 // will overflow in ~3000 years 
 // update cumulative chainlink price feed 
 int256  latestChainlinkPrice  =  indexPrice(); 
 oracleCumulativeAmount  +=  latestChainlinkPrice  *  timeElapsed  ; 

 Trail of Bits  24  Increment Protocol Fix Review 
 PUBLIC 



 // update cumulative market price feed 
 int256  latestMarketPrice  =  marketPrice().toInt256(); 
 marketCumulativeAmount  +=  latestMarketPrice  *  timeElapsed  ; 

 uint256  timeElapsedSinceBeginningOfPeriod  =  block.timestamp  - 
 globalPosition.timeOfLastTwapUpdate; 

 if  (timeElapsedSinceBeginningOfPeriod  >=  twapFrequency)  { 
 /* 

 TWAP = (priceCumulative1 - priceCumulative0) / timeElapsed 
 */ 

 // calculate chainlink twap 
 oracleTwap  =  ((oracleCumulativeAmount  - 

 oracleCumulativeAmountAtBeginningOfPeriod)  / 
 timeElapsedSinceBeginningOfPeriod.toInt256()).toInt128()  ; 

 // calculate market twap 
 marketTwap  =  ((marketCumulativeAmount  - 

 marketCumulativeAmountAtBeginningOfPeriod)  / 
 timeElapsedSinceBeginningOfPeriod.toInt256()).toInt128()  ; 

 // reset cumulative amount and timestamp 
 oracleCumulativeAmountAtBeginningOfPeriod  =  oracleCumulativeAmount; 
 marketCumulativeAmountAtBeginningOfPeriod  =  marketCumulativeAmount; 
 globalPosition.timeOfLastTwapUpdate  =  block.timestamp  .toUint64(); 

 emit  TwapUpdated(oracleTwap,  marketTwap); 
 } 

 } 

 Figure 8.1: The  _updateTwap  function in  Perpetual.sol#L1071-1110 

 Similarly, the  _getUnrealizedPnL  function in the  Perpetual  contract calculates the 
 tradingFees  value by multiplying a primitive and a  fixed-point integer (figure 8.2). 

 function  _getUnrealizedPnL(LibPerpetual.TraderPosition  memory  trader)  internal  view 
 returns  (  int256  ) { 

 int256  oraclePrice = indexPrice(); 
 int256  vQuoteVirtualProceeds =  int256  (trader.positionSize).wadMul(oraclePrice); 
 int256  tradingFees = (vQuoteVirtualProceeds.abs()  * market.out_fee().toInt256()) 

 / CURVE_TRADING_FEE_PRECISION;  // @dev: take upper  bound on the trading fees 

 // in the case of a LONG, trader.openNotional  is negative but 
 vQuoteVirtualProceeds is positive 

 // in the case of a SHORT, trader.openNotional  is positive while 
 vQuoteVirtualProceeds is negative 

 return  int256  (trader.openNotional) + vQuoteVirtualProceeds  - tradingFees; 
 } 

 Figure 8.2: The  _getUnrealizedPnL  function in  Perpetual.sol#L1175-1183 

 Trail of Bits  25  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1071-L1110
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1175-L1183


 These calculations can lead to unexpected overflows or cause the system to enter an 
 undefined state. Note that there are other such calculations in the codebase that are not 
 documented in this finding. 

 Fix Analysis 
 This issue has been  resolved  . The Increment Finance  team updated the inline 
 documentation to explain the use of primitive division and multiplication involving both 
 fixed-point and non-fixed-point integers. 

 Trail of Bits  26  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/pull/496


 9. Liquidations are vulnerable to sandwich attacks 

 Status:  Resolved 

 Severity:  Medium  Difficulty:  High 

 Type: Timing  Finding ID: TOB-INC-9 

 Target:  contracts/ClearingHouse.sol 

 Description 
 Token swaps that are performed to liquidate a position use a hard-coded zero as the 
 “minimum-amount-out” value, making them vulnerable to sandwich attacks. 

 The minimum-amount-out value indicates the minimum amount of tokens that a user will 
 receive from a swap. The value is meant to provide protection against pool illiquidity and 
 sandwich attacks. Senders of position and liquidity provision updates are allowed to specify 
 a minimum amount out. However, the minimum-amount-out value used in liquidations of 
 both traders’ and liquidity providers’ positions is hard-coded to zero. Figures 9.1 and 9.2 
 show the functions that perform these liquidations (  _liquidateTrader  and 
 _liquidateLp  , respectively). 

 function  _liquidateTrader( 
 uint256  idx, 
 address  liquidatee, 
 uint256  proposedAmount 

 )  internal  returns  (  int256  pnL,  int256  positiveOpenNotional)  { 
 (positiveOpenNotional) =  int256  (_getTraderPosition(idx, 

 liquidatee).openNotional).abs(); 

 LibPerpetual.Side closeDirection = _getTraderPosition(idx, 
 liquidatee).positionSize >=  0 

 ? LibPerpetual.Side.Short 
 : LibPerpetual.Side.Long; 

 // (liquidatee, proposedAmount) 
 (, , pnL, ) = perpetuals[idx].changePosition(liquidatee, proposedAmount,  0  , 

 closeDirection,  true  ); 

 // traders are allowed to reduce their positions  partially, but liquidators have 
 to close positions in full 

 if  (perpetuals[idx].isTraderPositionOpen(liquidatee)) 
 revert  ClearingHouse_LiquidateInsufficientProposedAmount(); 

 return  (pnL, positiveOpenNotional); 

 Trail of Bits  27  Increment Protocol Fix Review 
 PUBLIC 



 } 

 Figure 9.1: The  _liquidateTrader  function in  ClearingHouse.sol#L522-541 

 function  _liquidateLp  ( 
 uint256  idx  , 
 address  liquidatee  , 
 uint256  proposedAmount 

 )  internal  returns  (  int256  pnL  ,  int256  positiveOpenNotional  )  { 
 positiveOpenNotional  =  _getLpOpenNotional(idx,  liquidatee).abs(); 

 // close lp 
 (pnL,  ,  )  =  perpetuals[idx].removeLiquidity( 

 liquidatee, 
 _getLpLiquidity(idx,  liquidatee), 
 [  uint256  (  0  ),  uint256  (  0  )]  , 
 proposedAmount, 
 0  , 
 true 

 ); 
 _distributeLpRewards(idx,  liquidatee); 

 return  (pnL,  positiveOpenNotional); 
 } 

 Figure 9.2: The  _liquidateLp  function in  ClearingHouse.sol#L543-562 

 Without the ability to set a minimum amount out, liquidators are not guaranteed to receive 
 any tokens from the pool during a swap. If a liquidator does not receive the correct amount 
 of tokens, he or she will be unable to close the position, and the transaction will revert; the 
 revert will also prolong the Increment Protocol’s exposure to debt. Moreover, liquidators 
 will be discouraged from participating in liquidations if they know that they may be subject 
 to sandwich attacks and may lose money in the process. 

 Fix Analysis 
 This issue has been  resolved  . Liquidators can now  specify a minimum-amount-out value 
 when liquidating a position. 

 Trail of Bits  28  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/ClearingHouse.sol#L522-L541
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/ClearingHouse.sol#L543-L562
https://github.com/Increment-Finance/increment-protocol/pull/477


 10. Accuracy of market and oracle TWAPs is tied to the frequency of user 
 interactions 

 Status:  Resolved 

 Severity:  Informational  Difficulty:  High 

 Type: Data Validation  Finding ID: TOB-INC-10 

 Target:  contracts/ClearingHouse.sol 

 Description 
 The oracle and market TWAPs can be updated only during traders’ and liquidity providers’ 
 interactions with the protocol; a downtick in user interactions will result in less accurate 
 TWAPs that are more susceptible to manipulation. 

 The accuracy of a TWAP is related to the number of data points available for the average 
 price calculation. The less often prices are logged, the less robust the TWAP becomes. In 
 the case of the Increment Protocol, a TWAP can be updated with each block that contains a 
 trader or liquidity provider interaction. However, during a market slump (i.e., a time of 
 reduced network traffic), there will be fewer user interactions and thus fewer price 
 updates. 

 TWAP updates are performed by the  Perpetual._updateTwap  function, which is called by 
 the internal  Perpetual._updateGlobalState  function.  Other protocols, though, take a 
 different approach to keeping markets up to date. The Compound Protocol, for example, 
 has an  accrueInterest  function that is called upon  every user interaction but is  also  a 
 standalone public function that anyone can call. 

 Fix Analysis 
 This issue has been  resolved  . The Increment Finance  team created a public 
 updateGlobalState  function that anyone can call to  update a perpetual market. 

 Trail of Bits  29  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/pull/473/files


 11. Liquidations of short positions may fail because of insu�cient dust 
 collection 

 Status:  Resolved 

 Severity:  Low  Difficulty:  High 

 Type: Data Validation  Finding ID: TOB-INC-11 

 Target:  contracts/Perpetual.sol 

 Description 
 Because the protocol does not collect the dust associated with short positions, attempts to 
 fully close and then liquidate those positions will fail. 

 One of the key requirements for the successful liquidation of a position is the closure of the 
 entire position; in other words, by the end of the transaction, the debt and assets of the 
 trader or liquidity provider must be zero. The process of closing a long position is a 
 straightforward one, since identifying the correct  proposedAmount  value (the amount of 
 tokens to be swapped) is trivial. Finding the correct  proposedAmount  for a short position, 
 however, is more  complex  . 

 If the  proposedAmount  estimate is incorrect, the transaction  will result in leftover dust, 
 which the protocol will attempt to collect (figure 11.1). 

 function  _reducePositionOnMarket  ( 
 LibPerpetual.TraderPosition  memory  user, 
 bool  isLong  , 
 uint256  proposedAmount  , 
 uint256  minAmount 

 ) 
 internal 
 returns  ( 

 int256  baseProceeds  , 
 int256  quoteProceeds  , 
 int256  addedOpenNotional  , 
 int256  pnl 

 ) 
 { 

 int256  positionSize  =  int256  (user.positionSize); 

 uint256  bought  ; 
 uint256  feePer  ; 
 if  (isLong)  { 

 Trail of Bits  30  Increment Protocol Fix Review 
 PUBLIC 

https://increment-team.gitbook.io/developer-docs/guides/how-choose-proposedamount


 quoteProceeds  =  -(proposedAmount.toInt256()); 
 (bought,  feePer)  =  _quoteForBase(proposedAmount,  minAmount); 
 baseProceeds  =  bought.toInt256(); 

 }  else  { 
 (bought,  feePer)  =  _baseForQuote(proposedAmount,  minAmount); 
 quoteProceeds  =  bought.toInt256(); 
 baseProceeds  =  -(proposedAmount.toInt256()); 

 } 

 int256  netPositionSize  =  baseProceeds  +  positionSize; 
 if  (netPositionSize  >  0  &&  netPositionSize  <=  1e17)  { 

 _donate(netPositionSize.toUint256()); 
 baseProceeds  -=  netPositionSize; 

 } 
 [...] 

 } 

 Figure 11.1: The  _reducePositionOnMarket  function  in  Perpetual.sol#L876-921 

 The protocol will collect leftover dust only if  netPositionSize  is greater than zero, which 
 is possible only if the position that is being closed is a long one. If a short position is left 
 with any dust, it will not be collected, since  netPositionSize  will be less than zero. 

 This inconsistency has a direct impact on the success of liquidations, because a position 
 must be completely closed in order for a liquidation to occur; no dust can be left over. 
 When liquidating the position of a liquidity provider, the  Perpetual  contract’s 
 _settleLpPosition  function checks whether  netBasePosition  is less than zero (as 
 shown in figure 11.2). If it is, the liquidation will fail. Because the protocol does not collect 
 dust from short positions, the  netBasePosition  value  of such a position may be less than 
 zero. The  ClearingHouse._liquidateTrader  function,  called to liquidate traders’ 
 positions, enforces a similar requirement regarding total closures. 

 function  _settleLpPosition  ( 
 LibPerpetual.TraderPosition  memory  positionToClose, 
 uint256  proposedAmount  , 
 uint256  minAmount  , 
 bool  isLiquidation 

 )  internal  returns  (  int256  pnl  ,  int256  quoteProceeds  )  { 
 int256  baseProceeds  ; 

 (baseProceeds,  quoteProceeds,  ,  pnl)  =  _reducePositionOnMarket( 
 positionToClose, 
 !(positionToClose.positionSize  >  0  ), 
 proposedAmount, 
 minAmount 

 ); 
 [...] 
 int256  netBasePosition  =  positionToClose.positionSize  +  baseProceeds; 

 if  (netBasePosition  <  0  )  revert  Perpetual_LPOpenPosition(); 

 Trail of Bits  31  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9f4af7aea63d637e842a1bc4314d00a13b58be24/contracts/Perpetual.sol#L876-L921


 if  (netBasePosition  >  0  &&  netBasePosition  <=  1e17) 
 _donate(netBasePosition.toUint256()); 
 } 

 Figure 11.2: The  _settleLpPosition  function in  Perpetual.sol#L1005-1030 

 If the liquidation of a position fails, any additional attempts at liquidation will lower the 
 liquidator’s profit margin, which might dissuade the liquidator from trying again. 
 Additionally, failed liquidations prolong the protocol’s exposure to debt. 

 Exploit Scenario 
 Alice, a liquidator, notices that a short position is no longer valid and decides to liquidate it. 
 However, Alice sets an incorrect  proposedAmount  value,  so the position is left with some 
 dust. Because the protocol does not collect the dust of short positions, the liquidation fails. 
 As a result, Alice loses money—and the loss dissuades her from attempting to liquidate any 
 other undercollateralized positions. 

 Fix Analysis 
 This issue has been  resolved  . The Increment Finance  team updated the liquidation flows 
 for both short and long positions to ensure that liquidations of short positions will also 
 succeed. 

 Trail of Bits  32  Increment Protocol Fix Review 
 PUBLIC 

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1005-L1030
https://github.com/Increment-Finance/increment-protocol/pull/498


 12. Project dependencies contain vulnerabilities 

 Status:  Resolved 

 Severity:  Low  Difficulty:  High 

 Type: Patching  Finding ID: TOB-INC-12 

 Target:  increment-protocol 

 Description 
 Although dependency scans did not identify a direct threat to the project under review, 
 yarn  audit  identified dependencies with known vulnerabilities.  Due to the sensitivity of 
 the deployment code and its environment, it is important to ensure that dependencies are 
 not malicious. Problems with dependencies in the JavaScript community could have a 
 significant effect on the repository under review. The output below details the high-severity 
 vulnerabilities: 

 CVE ID  Description  Dependency 

 CVE-2021-23358  Arbitrary code injection vulnerability  underscore 

 CVE-2021-43138  Prototype pollution  async 

 CVE-2021-23337  Command injection vulnerability  lodash 

 CVE-2022-0235  “  node-fetch  is vulnerable to 
 exposure of sensitive information to 

 an unauthorized actor” 

 node-fetch 

 Figure 12.1: Advisories affecting  increment-protocol  dependencies 

 Fix Analysis 
 This issue has been  resolved  . The Increment Finance  team updated most of the 
 dependencies to their latest versions and implemented an automated 
 dependency-monitoring solution. 

 Trail of Bits  33  Increment Protocol Fix Review 
 PUBLIC 

https://nvd.nist.gov/vuln/detail/CVE-2021-23358
https://nvd.nist.gov/vuln/detail/CVE-2021-43138
https://nvd.nist.gov/vuln/detail/CVE-2021-23337
https://nvd.nist.gov/vuln/detail/CVE-2022-0235
https://github.com/Increment-Finance/increment-protocol/pull/485


 13. Risks associated with oracle outages 

 Status:  Unresolved 

 Severity:  Informational  Difficulty:  High 

 Type: Configuration  Finding ID: TOB-INC-13 

 Target:  increment-protocol 

 Description 
 Under extreme market conditions, the Chainlink oracle may cease to work as expected, 
 causing unexpected behavior in the Increment Protocol. 

 Such oracle issues have occurred in the past. For example, during the LUNA market crash, 
 the Venus protocol was  exploited  because Chainlink  stopped providing up-to-date prices. 
 The interruption occurred because the price of LUNA dropped below the minimum price 
 (  minAnswer  ) allowed by the  LUNA / USD price feed  on  the BNB chain. As a result, all oracle 
 updates reverted. Chainlink’s  automatic circuit breakers  ,  which pause price feeds during 
 extreme market conditions, could pose similar problems. 

 Note that these kinds of events cannot be tracked on-chain. If a price feed is paused, 
 updatedAt  will still be greater than zero, and  answeredInRound  will still be equal to 
 roundID  . 

 Thus, the Increment Finance team should implement an off-chain monitoring solution to 
 detect any anomalous behavior exhibited by Chainlink oracles. The monitoring solution 
 should check for the following conditions and issue alerts if they occur, as they may be 
 indicative of abnormal market events: 

 ●  An asset price that is approaching the  minAnswer  or  maxAnswer  value 

 ●  The suspension of a price feed by an automatic circuit breaker 

 ●  Any large deviations in the price of an asset 

 Fix Analysis 
 This issue remains unresolved. However, the Increment Finance team indicated that it will 
 be implementing an off-chain monitoring solution in the future. 

 Trail of Bits  34  Increment Protocol Fix Review 
 PUBLIC 

https://blog.venus.io/venus-protocol-official-statement-regarding-luna-6eb45c3cb058
https://bscscan.com/address/0xec72d46011d67a6ac4fa7d3f476fa2049dc807ee
https://docs.chain.link/docs/selecting-data-feeds/#risk-mitigation


 A. Status Categories 

 The following table describes the statuses used to indicate whether an issue has been 
 sufficiently addressed. 

 Fix Status 

 Status  Description 

 Undetermined  The status of the issue was not determined during this engagement. 

 Unresolved  The issue persists and has not been resolved. 

 Partially Resolved  The issue persists but has been partially resolved. 

 Resolved  The issue has been sufficiently resolved. 

 Trail of Bits  35  Increment Protocol Fix Review 
 PUBLIC 



 B. Vulnerability Categories 

 The following tables describe the vulnerability categories, severity levels, and difficulty 
 levels used in this document. 

 Vulnerability Categories 

 Category  Description 

 Access Controls  Insufficient authorization or assessment of rights 

 Auditing and Logging  Insufficient auditing of actions or logging of problems 

 Authentication  Improper identification of users 

 Configuration  Misconfigured servers, devices, or software components 

 Cryptography  A breach of system confidentiality or integrity 

 Data Exposure  Exposure of sensitive information 

 Data Validation  Improper reliance on the structure or values of data 

 Denial of Service  A system failure with an availability impact 

 Error Reporting  Insecure or insufficient reporting of error conditions 

 Patching  Use of an outdated software package or library 

 Session Management  Improper identification of authenticated users 

 Testing  Insufficient test methodology or test coverage 

 Timing  Race conditions or other order-of-operations flaws 

 Undefined Behavior  Undefined behavior triggered within the system 

 Trail of Bits  36  Increment Protocol Fix Review 
 PUBLIC 



 Severity Levels 

 Severity  Description 

 Informational  The issue does not pose an immediate risk but is relevant to security best 
 practices. 

 Undetermined  The extent of the risk was not determined during this engagement. 

 Low  The risk is small or is not one the client has indicated is important. 

 Medium  User information is at risk; exploitation could pose reputational, legal, or 
 moderate financial risks. 

 High  The flaw could affect numerous users and have serious reputational, legal, 
 or financial implications. 

 Difficulty Levels 

 Difficulty  Description 

 Undetermined  The difficulty of exploitation was not determined during this engagement. 

 Low  The flaw is well known; public tools for its exploitation exist or can be 
 scripted. 

 Medium  An attacker must write an exploit or will need in-depth knowledge of the 
 system. 

 High  An attacker must have privileged access to the system, may need to know 
 complex technical details, or must discover other weaknesses to exploit this 
 issue. 

 Trail of Bits  37  Increment Protocol Fix Review 
 PUBLIC 


