
 Increment Finance: Increment

 Protocol
 Security Assessment

 November 10, 2022

 Prepared for:

 Increment Finance

 Prepared by: Anish Naik, Justin Jacob, and Vara Prasad Bandaru

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Increment Protocol Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Increment
 Finance under the terms of the project statement of work and has been made public at
 Increment Finance’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Increment Protocol Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Project Summary 7

 Project Goals 8

 Project Targets 9

 Project Coverage 10

 Codebase Maturity Evaluation 14

 Summary of Findings 17

 Detailed Findings 19

 1. Governance role is a single point of failure 19

 2. Inconsistent lower bounds on collateral weights 21

 3. Solidity compiler optimizations can be problematic 23

 4. Support for multiple reserve tokens allows for arbitrage 24

 5. Ownership transfers can be front-run 26

 6. Funding payments are made in the wrong token 28

 7. Excessive dust collection may lead to premature closures of long positions 31

 8. Problematic use of primitive operations on fixed-point integers 33

 9. Liquidations are vulnerable to sandwich attacks 36

 10. Accuracy of market and oracle TWAPs is tied to the frequency of user
 interactions 38

 Trail of Bits 3 Increment Protocol Security Assessment
 PUBLIC

 11. Liquidations of short positions may fail because of insufficient dust collection 39

 12. Project dependencies contain vulnerabilities 42

 13. Risks associated with oracle outages 44

 Summary of Recommendations 45

 A. Vulnerability Categories 46

 B. Code Maturity Categories 48

 C. Multisignature Wallet Best Practices 50

 D. Incident Response Plan Recommendations 52

 E. Code Quality Recommendations 54

 Trail of Bits 4 Increment Protocol Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 Increment Finance engaged Trail of Bits to review the security of its Increment Protocol.
 From August 22 to September 2, 2022, a team of two consultants conducted a security
 review of the client-provided source code, with four person-weeks of effort. Details of the
 project’s timeline, test targets, and coverage are provided in subsequent sections of this
 report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the target system, including access to the source code and
 relevant documentation. We performed static testing of the target system and its
 codebase, using both automated and manual processes.

 Summary of Findings
 The audit uncovered significant flaws that could impact system confidentiality, integrity, or
 availability. A summary of the findings and details on notable findings are provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 3

 Medium 3

 Low 2

 Informational 5

 Undetermined 0

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 1

 Configuration 1

 Data Validation 5

 Patching 1

 Timing 2

 Undefined Behavior 3

 Trail of Bits 5 Increment Protocol Security Assessment
 PUBLIC

 Notable Findings
 Significant flaws that impact system confidentiality, integrity, or availability are listed below.

 ● TOB-INC-1
 The governance role constitutes a single point of failure because of the large
 number of privileges granted to it.

 ● TOB-INC-5
 Because the transferPerpOwner function can be called by anyone, an attacker
 could front-run a legitimate call to the function to cause a denial of service (DoS).

 ● TOB-INC-6
 Funding payments are made in vBase tokens; however, when a user is owed a
 funding payment, the protocol updates the user’s balance of UA tokens. This results
 in the incorrect calculation of the user’s profits and losses, a delayed convergence
 between the value of a Perpetual contract and that of the underlying asset, and an
 increased risk of liquidations.

 Trail of Bits 6 Increment Protocol Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Anne Marie Barry , Project Manager
 dan@trailofbits.com annemarie.barry@trailofbits.com

 The following engineers were associated with this project:

 Anish Naik , Consultant Justin Jacob , Consultant
 anish.naik@trailofbits.com justin.jacob@trailofbits.com

 Vara Prasad Bandaru , Consultant
 vara.bandaru@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 August 18, 2022 Pre-project kickoff call

 August 26, 2022 Status update meeting #1

 September 2, 2022 Report readout meeting and delivery of report draft

 November 10, 2022 Delivery of final report and fix review

 Trail of Bits 7 Increment Protocol Security Assessment
 PUBLIC

mailto:dan@trailofbits.com
mailto:justin.jacob@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of Increment Finance’s
 Increment Protocol. Specifically, we sought to answer the following non-exhaustive list of
 questions:

 ● Could an attacker steal funds from the system?

 ● Are there appropriate access controls in place?

 ● Are the free-collateral and margin requirements calculated correctly?

 ● Are user-provided parameters sufficiently validated?

 ● Are the arithmetic calculations and state changes performed during position
 updates, liquidity provisions, and liquidations correct?

 ● Does the dust collection mechanism lead to any undefined behavior?

 ● Are there front-running or DoS opportunities in the system?

 ● How is oracle data obtained and handled?

 ● Is it possible to prevent the execution of liquidations?

 Trail of Bits 8 Increment Protocol Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 Increment Protocol

 Repository https://github.com/Increment-Finance/increment-protocol

 Version 9368b23ac2d2f5dc954cc849d20cdeca21d627c6

 Type Solidity

 Platform zkSync

 Trail of Bits 9 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches and their results include the following:

 ClearingHouse and Perpetual . The ClearingHouse contract is the entry point for all
 user interactions with the protocol. It interacts with the various perpetual markets and the
 vault where funds are stored. The Perpetual contract represents a single perpetual
 market and contains the logic for deposits, withdrawals, liquidity provisions, liquidations,
 and interactions with the Curve virtual automated market maker (vAMM).

 ● In our manual review of the contracts, we reviewed the correctness of the following
 arithmetic calculations and state changes:

 ○ Those that occur when a trader increases, reduces, reverses, or closes his or
 her position

 ○ Those that occur when a liquidity provider supplies or removes liquidity

 ○ Those that occur when a liquidator attempts to liquidate a trader’s or
 liquidity provider’s position

 ● We also analyzed the calculation of the funding payments owed to a user. This led
 us to discover that those payments are made in vBase tokens instead of UA tokens
 (TOB-INC-6).

 ● We reviewed the arithmetic calculations that determine a user’s free collateral to
 ensure that they comply with the mathematical specification provided by the client.

 ● We checked the protocol for ways to front-run a contract’s initialization, a liquidation
 or liquidity provision operation, or a position update. This led us to find that
 liquidators’ swaps are vulnerable to sandwich attacks because the minimum payout
 amount is hard-coded to zero (TOB-INC-9).

 ● We reviewed the protocol’s dust collection mechanism and found that a position
 may be closed prematurely if an excessive amount of dust is collected (TOB-INC-7).
 Additionally, as detailed in TOB-INC-11 , because dust is not collected when short
 positions are closed, attempts to liquidate those positions may fail.

 Vault . The Vault contract holds user funds across all perpetual markets. We conducted a
 manual review of this contract and investigated the following:

 Trail of Bits 10 Increment Protocol Security Assessment
 PUBLIC

 ● We checked whether an attacker could steal funds from the Vault contract by
 reentering any functions in the ClearingHouse or Perpetual contract.

 ● We checked whether an attacker could bypass any of the access controls on Vault
 functions to steal funds from the contract.

 ● We reviewed the arithmetic operations and state changes that occur within the
 Vault to ensure that user balances are monitored correctly and that token
 conversions and transfers are performed correctly.

 ● We reviewed the use of ERC4626 tokens as collateral and checked whether it
 introduces any undefined behavior.

 ● We reviewed the bounds on all owner-controlled system parameters and found that
 the bounds on the collateral weight parameter are inconsistent (TOB-INC-2).

 Oracle . The Oracle contract is responsible for reporting underlying currency prices
 provided by Chainlink oracles. We conducted a manual review of this contract and
 investigated the following:

 ● We reviewed whether the contract adheres to best practices regarding the retrieval
 and validation of Chainlink pricing data.

 ● We reviewed the mechanism for retrieving ERC4626 token prices to ensure that it
 adheres to the token standard and is invulnerable to manipulation.

 ● We reviewed the way in which the protocol tracks sequencer uptime to ensure that
 if the sequencer goes down, the contract will not report stale or incorrect pricing
 data.

 Insurance . If a user’s or liquidity provider’s position enters default, the protocol can draw
 funds from the Insurance contract to avoid going into debt. We conducted a manual
 review of this contract and investigated the following:

 ● We checked whether an attacker could bypass any of the access controls on
 Insurance functions to steal funds from the protocol.

 ● We reviewed the arithmetic operations and state changes performed when
 insurance must kick in to prevent the protocol from going into debt or incurring an
 unexpected loss.

 CurveCryptoViews . The CurveCryptoViews contract is a view-only contract used to
 estimate the amount of fees associated with a swap or the amount of output or input

 Trail of Bits 11 Increment Protocol Security Assessment
 PUBLIC

 tokens consumed during a swap. We manually reviewed the protocol’s Solidity
 implementation of Curve’s get_dy function, get_dy_ex_fees , to check whether it
 preserves the original functionality.

 tokens/ . The tokens/ folder holds the VBase , VQuote , and UA contracts. A pair of vBase
 and vQuote tokens is used to represent each perpetual market. The UA contract serves as
 the unit-of-account token for a user’s profits and losses. We conducted a manual review of
 these contracts and investigated the following:

 ● We reviewed the issuance and redemption mechanism of the UA contract. This led
 to the discovery of the arbitrage risk detailed in TOB-INC-4 . Specifically, an
 arbitrageur could leverage the price difference between two tokens to make a
 risk-free profit.

 ● We reviewed the VBase contract’s price retrieval mechanism to ensure that it
 adheres to best practices regarding the retrieval and validation of Chainlink pricing
 data.

 ● We reviewed the BaseToken contract, checking whether the omissions from the
 original Solmate implementation lead to any undefined behavior.

 lib/ . The lib/ folder holds the LibMath , LibPerpetual , and LibReserve libraries. The
 LibMath library contains arithmetic functions that use PRBMath under the hood for
 fixed-point arithmetic. The LibReserve library contains the logic for converting a token’s
 decimal precision to (or from) 18-decimal precision. The LibPerpetual library contains
 various structs used across the codebase (and no state-changing logic). We conducted a
 manual review of these libraries and investigated the following:

 ● We reviewed the codebase’s use of fixed-point integers and operations. This review
 yielded one finding, TOB-INC-8 , which concerns the use of primitive operations on
 fixed-point integers as well as arithmetic calculations that combine primitive and
 fixed-point integers.

 ● We manually verified that the tokenToWad and wadToToken functions are
 symmetric operations.

 utils/ . The utils/ folder holds the IncreAccessControl and PerpOwnable contracts.
 The IncreAccessControl contract defines modifiers for checking whether a sender has
 the governance or manager role. The PerpOwnable contract is inherited by the Perpetual
 contract and represents the owner of a given perpetual market. We conducted a manual
 review of these contracts and investigated the following:

 Trail of Bits 12 Increment Protocol Security Assessment
 PUBLIC

 ● We reviewed the contracts’ access controls. This led to the discovery of TOB-INC-1 ,
 which highlights the excessive privileges given to the governance role.

 ● We looked for ways in which a user could take ownership of a perpetual market.
 This led us to discover that a malicious user could front-run a call to
 transferPerpOwner to cause a DoS (TOB-INC-5).

 zkSync. Because the protocol will be deployed on zkSync, we looked for any edge cases
 that could result from the deployment of Solidity smart contracts on zkSync.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● PRBMathSD59x18 and PRBMathUD60x18 . The protocol uses the two PRBMath
 libraries to perform arithmetic operations over fixed-point signed and unsigned
 integers. We did not review this external library during the audit.

 ● ClearingHouseViewer . The protocol’s front end uses ClearingHouseViewer , a
 view-only contract, to gauge the state of the system. This contract was excluded
 from the audit’s scope at Increment Finance’s request.

 ● CurveCryptoViews . Only the get_dy_ex_fees function was reviewed during the
 audit.

 ● LibReserve . Because this library holds only structs (and not state-changing logic or
 critical view functions), we considered it out of scope.

 ● Dynamic testing. Because of the time constraints of the audit, we were unable to
 perform end-to-end dynamic fuzz testing of the system.

 Trail of Bits 13 Increment Protocol Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The codebase uses Solidity v0.8.15 for arithmetic
 operations and the PRBMathSD59x18 and
 PRBMathUD60x18 libraries for fixed-point arithmetic . We
 were provided a mathematical specification discussing
 critical operations. However, we found issues regarding
 the collection of dust (TOB-INC-7), which can be
 excessive, and the incorrect use of fixed-point and
 normal integers in the same primitive operations
 (TOB-INC-8). We recommend using Echidna for dynamic
 fuzz testing of the arithmetic operations.

 Moderate

 Auditing All functions involved in critical state-changing operations
 emit events. However, it is unclear whether the
 Increment Finance team has implemented off-chain
 monitoring or developed an incident response plan.
 Recommendations on creating an incident response plan
 are provided in appendix D .

 Moderate

 Authentication /
 Access Controls

 The system uses role-based access controls. The
 governance and manager roles are responsible for
 superuser actions, and their responsibilities are
 documented. However, given the number of privileges
 provided to the governance role, it constitutes a single
 point of failure (TOB-INC-1).

 Moderate

 Complexity
 Management

 Because the codebase relies on Curve’s vAMM, it must
 use a complex model to correctly calculate fees. In
 addition, much of the codebase has high cyclomatic

 Weak

 Trail of Bits 14 Increment Protocol Security Assessment
 PUBLIC

 complexity, with many different control flows
 corresponding to each operation; this complexity makes
 the codebase difficult to test and maintain. The
 Increment Finance team should review all system flows
 and identify any functions that could be removed to
 decrease complexity.

 Decentralization The system has two privileged actors, both of which are
 controlled by multisignature wallets; their abilities are
 documented, but the risks associated with privileged
 actors should be outlined in greater detail. Additionally,
 when the protocol is not paused, users can exit the
 system at will. Finally, the risks related to external
 contract interactions are also documented.

 If the Increment Finance team moves from a
 multisignature architecture to a decentralized
 autonomous organization (DAO), we recommend that the
 team thoroughly document the migration plan ahead of
 that move.

 Moderate

 Documentation The Increment Finance team has developed thorough
 user and developer documentation regarding each part
 of the protocol. It also provided diagrams explaining the
 end-to-end use of the system, and most functions in the
 codebase have NatSpec-compliant comments. However,
 the inline documentation should be expanded to
 improve the codebase’s readability. Additionally, there
 are some discrepancies between the protocol
 specification and the implementation.

 Satisfactory

 Front-Running
 Resistance

 We identified two front-running opportunities
 (TOB-INC-5 , TOB-INC-9), both of which could degrade
 user experience and lead to a DoS. We also identified an
 arbitrage opportunity, detailed in TOB-INC-4 . Users
 should be provided documentation on this arbitrage
 opportunity (and any others) and the risk of
 front-running.

 Weak

 Trail of Bits 15 Increment Protocol Security Assessment
 PUBLIC

 Low-Level
 Manipulation

 Only one function in the codebase uses inline assembly.
 However, that function should have additional inline
 documentation outlining the use of assembly and its
 advantages over a higher-level implementation.

 Satisfactory

 Testing and
 Verification

 While the codebase has high unit test coverage, we
 identified a number of issues that could have been found
 with a deeper test suite. We recommend that the
 Increment Finance team expand its suite of integration
 tests and implement automated fuzz testing.

 Moderate

 Trail of Bits 16 Increment Protocol Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Governance role is a single point of failure Access Controls High

 2 Inconsistent lower bounds on collateral weights Data Validation Medium

 3 Solidity compiler optimizations can be
 problematic

 Undefined
 Behavior

 Informational

 4 Support for multiple reserve tokens allows for
 arbitrage

 Undefined
 Behavior

 Informational

 5 Ownership transfers can be front-run Timing High

 6 Funding payments are made in the wrong token Data Validation High

 7 Excessive dust collection may lead to premature
 closures of long positions

 Data Validation Medium

 8 Problematic use of primitive operations on
 fixed-point integers

 Undefined
 Behavior

 Informational

 9 Liquidations are vulnerable to sandwich attacks Timing Medium

 10 Accuracy of market and oracle TWAPs is tied to
 the frequency of user interactions

 Data Validation Informational

 11 Liquidations of short positions may fail because of
 insufficient dust collection

 Data Validation Low

 Trail of Bits 17 Increment Protocol Security Assessment
 PUBLIC

 12 Project dependencies contain vulnerabilities Patching Low

 13 Risks associated with oracle outages Configuration Informational

 Trail of Bits 18 Increment Protocol Security Assessment
 PUBLIC

 Detailed Findings

 1. Governance role is a single point of failure

 Severity: High Difficulty: High

 Type: Access Controls Finding ID: TOB-INC-1

 Target: Governance role

 Description
 Because the governance role is centralized and responsible for critical functionalities, it
 constitutes a single point of failure within the Increment Protocol.

 The role can perform the following privileged operations:

 ● Whitelisting a perpetual market

 ● Setting economic parameters

 ● Updating price oracle addresses and setting fixed prices for assets

 ● Managing protocol insurance funds

 ● Updating the addresses of core contracts

 ● Adding support for new reserve tokens to the UA contract

 ● Pausing and unpausing protocol operations

 These privileges give governance complete control over the protocol and therefore access
 to user and protocol funds. This increases the likelihood that the governance account will
 be targeted by an attacker and incentivizes governance to act maliciously.

 Note, though, that the governance role is currently controlled by a multisignature wallet (a
 multisig) and that control may be transferred to a decentralized autonomous organization
 (DAO) in the future.

 Trail of Bits 19 Increment Protocol Security Assessment
 PUBLIC

 Exploit Scenario
 Eve, an attacker, creates a fake token, compromises the governance account, and adds the
 fake token as a reserve token for UA. She mints UA by making a deposit of the fake token
 and then burns the newly acquired UA tokens, which enables her to withdraw all USDC
 from the reserves.

 Recommendations
 Short term, minimize the privileges of the governance role and update the documentation
 to include the implications of those privileges . Additionally, implement reasonable time
 delays for privileged operations.

 Long term, document an incident response plan and ensure that the private keys for the
 multisig are managed safely. Additionally, carefully evaluate the risks of moving from a
 multisig to a DAO and consider whether the move is necessary.

 Trail of Bits 20 Increment Protocol Security Assessment
 PUBLIC

 2. Inconsistent lower bounds on collateral weights

 Severity: Medium Difficulty: High

 Type: Data Validation Finding ID: TOB-INC-2

 Target: contracts/Vault.sol

 Description
 The lower bound on a collateral asset’s initial weight (when the collateral is first whitelisted)
 is different from that enforced if the weight is updated; this discrepancy increases the
 likelihood of collateral seizures by liquidators.

 A collateral asset’s weight represents the level of risk associated with accepting that asset
 as collateral. This risk calculation comes into play when the protocol is assessing whether a
 liquidator can seize a user’s non-UA collateral. To determine the value of each collateral
 asset, the protocol multiplies the user’s balance of that asset by the collateral weight (a
 percentage). A riskier asset will have a lower weight and thus a lower value. If the total
 value of a user’s non-UA collateral is less than the user’s UA debt, a liquidator can seize the
 collateral.

 When whitelisting a collateral asset, the Perpetual.addWhiteListedCollateral
 function requires the collateral weight to be between 10% and 100% (figure 2.1). According
 to the documentation, these are the correct bounds for a collateral asset’s weight.

 function addWhiteListedCollateral (
 IERC20Metadata asset,
 uint256 weight ,
 uint256 maxAmount

) public override onlyRole(GOVERNANCE) {
 if (weight < 1e17) revert Vault_InsufficientCollateralWeight();
 if (weight > 1e18) revert Vault_ExcessiveCollateralWeight();
 [...]

 }

 Figure 2.1: A snippet of the addWhiteListedCollateral function in Vault.sol#L224-230

 However, governance can choose to update that weight via a call to
 Perpetual.changeCollateralWeight , which allows the weight to be between 1% and
 100% (figure 2.2).

 Trail of Bits 21 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/3b07167993375160caaaec4fbeecba5e70756b2d/contracts/Vault.sol#L224-L230

 function changeCollateralWeight (IERC20Metadata asset, uint256 newWeight) external
 override onlyRole(GOVERNANCE) {

 uint256 tokenIdx = tokenToCollateralIdx[asset];
 if (!((tokenIdx != 0) || (address (asset) == address (UA)))) revert

 Vault_UnsupportedCollateral();

 if (newWeight < 1e16) revert Vault_InsufficientCollateralWeight();
 if (newWeight > 1e18) revert Vault_ExcessiveCollateralWeight();
 [...]

 }

 Figure 2.2: A snippet of the changeCollateralWeight function in Vault.sol#L254-259

 If the weight of a collateral asset were mistakenly set to less than 10%, the value of that
 collateral would decrease, thereby increasing the likelihood of seizures of non-UA
 collateral.

 Exploit Scenario
 Alice, who holds the governance role, decides to update the weight of a collateral asset in
 response to volatile market conditions. By mistake, Alice sets the weight of the collateral to
 1% instead of 10%. As a result of this change, Bob’s non-UA collateral assets decrease in
 value and are seized.

 Recommendations
 Short term, change the lower bound on newWeight in the changeCollateralWeight
 function from 1e16 to 1e17 .

 Long term, expand the unit test suite to cover additional edge cases and to ensure that the
 system behaves as expected.

 Trail of Bits 22 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/3b07167993375160caaaec4fbeecba5e70756b2d/contracts/Vault.sol#L254-L259

 3. Solidity compiler optimizations can be problematic

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-INC-3

 Target: Increment Protocol

 Description
 The Increment Protocol contracts have enabled optional compiler optimizations in Solidity.

 There have been several optimization bugs with security implications. Moreover,
 optimizations are actively being developed . Solidity compiler optimizations are disabled by
 default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
 unclear how well they are being tested and exercised.

 Security issues due to optimization bugs have occurred in the past . A medium- to
 high-severity bug in the Yul optimizer was introduced in Solidity version 0.8.13 and was
 fixed only recently, in Solidity version 0.8.17 . Another medium-severity optimization
 bug—one that caused memory writes in inline assembly blocks to be removed under
 certain conditions —was patched in Solidity 0.8.15.

 A compiler audit of Solidity from November 2018 concluded that the optional optimizations
 may not be safe .

 It is likely that there are latent bugs related to optimization and that new bugs will be
 introduced due to future optimizations.

 Exploit Scenario
 A latent or future bug in Solidity compiler optimizations causes a security vulnerability in
 the Increment Protocol contracts.

 Recommendations
 Short term, measure the gas savings from optimizations and carefully weigh them against
 the possibility of an optimization-related bug.

 Long term, monitor the development and adoption of Solidity compiler optimizations to
 assess their maturity.

 Trail of Bits 23 Increment Protocol Security Assessment
 PUBLIC

https://github.com/ethereum/solidity/pull/13535
https://docs.soliditylang.org/en/latest/bugs.html
https://blog.soliditylang.org/2022/09/08/storage-write-removal-before-conditional-termination/
https://blog.soliditylang.org/2022/06/15/inline-assembly-memory-side-effects-bug/
https://blog.soliditylang.org/2022/06/15/inline-assembly-memory-side-effects-bug/
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

 4. Support for multiple reserve tokens allows for arbitrage

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-INC-4

 Target: contracts/tokens/UA.sol

 Description
 Because the UA token contract supports multiple reserve tokens, it can be used to swap
 one reserve token for another at a ratio of 1:1. This creates an arbitrage opportunity, as it
 enables users to swap reserve tokens with different prices.

 Users can deposit supported reserve tokens in the UA contract in exchange for UA tokens
 at a 1:1 ratio (figure 4.1).

 function mintWithReserve (uint256 tokenIdx , uint256 amount) external override {
 // Check that the reserve token is supported
 if (tokenIdx > reserveTokens.length - 1) revert UA_InvalidReserveTokenIndex();
 ReserveToken memory reserveToken = reserveTokens[tokenIdx];

 // Check that the cap of the reserve token isn't reached
 uint256 wadAmount = LibReserve.tokenToWad(reserveToken.asset.decimals(),

 amount);
 if (reserveToken.currentReserves + wadAmount > reserveToken.mintCap) revert

 UA_ExcessiveTokenMintCapReached();

 _mint(msg.sender , wadAmount);
 reserveTokens[tokenIdx].currentReserves += wadAmount;

 reserveToken.asset.safeTransferFrom(msg.sender , address (this), amount);
 }

 Figure 4.1: The mintWithReserve function in UA.sol#L38-51

 Similarly, users can withdraw the amount of a deposit by returning their UA in exchange for
 any supported reserve token, also at a 1:1 ratio (figure 4.2).

 function withdraw (uint256 tokenIdx , uint256 amount) external override {
 // Check that the reserve token is supported
 if (tokenIdx > reserveTokens.length - 1) revert UA_InvalidReserveTokenIndex();
 IERC20Metadata reserveTokenAsset = reserveTokens[tokenIdx].asset;

 _burn(msg.sender , amount);

 Trail of Bits 24 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/main/contracts/tokens/UA.sol#L38-L51

 reserveTokens[tokenIdx].currentReserves -= amount;

 uint256 tokenAmount = LibReserve.wadToToken(reserveTokenAsset.decimals(),
 amount);

 reserveTokenAsset.safeTransfer(msg.sender , tokenAmount);
 }

 Figure 4.2: The withdraw function in UA.sol#L56-66

 Thus, a user could mint UA by depositing a less valuable reserve token and then withdraw
 the same amount of a more valuable token in one transaction, engaging in arbitrage.

 Exploit Scenario
 Alice, who holds the governance role, adds USDC and DAI as reserve tokens. Eve notices
 that DAI is trading at USD 0.99, while USDC is trading at USD 1.00. Thus, she decides to mint
 a large amount of UA by depositing DAI and to subsequently return the DAI and withdraw
 USDC, allowing her to make a risk-free profit.

 Recommendations
 Short term, document all front-running and arbitrage opportunities in the protocol to
 ensure that users are aware of them. As development continues, reassess the risks
 associated with those opportunities and evaluate whether they could adversely affect the
 protocol .

 Long term, implement an off-chain monitoring solution (like that detailed in TOB-INC-13) to
 detect any anomalous fluctuations in the prices of supported reserve tokens. Additionally,
 develop an incident response plan to ensure that any issues that arise can be addressed
 promptly and without confusion. (See appendix D for additional details on creating an
 incident response plan.)

 Trail of Bits 25 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/main/contracts/tokens/UA.sol#L56-L66

 5. Ownership transfers can be front-run

 Severity: High Difficulty: High

 Type: Timing Finding ID: TOB-INC-5

 Target: contracts/utils/PerpOwnable.sol

 Description
 The PerpOwnable contract provides an access control mechanism for the minting and
 burning of a Perpetual contract’s vBase or vQuote tokens. The owner of these token
 contracts is set via the transferPerpOwner function, which assigns the owner’s address
 to the perp state variable. This function is designed to be called only once, during
 deployment, to set the Perpetual contract as the owner of the tokens. Then, as the
 tokens’ owner, the Perpetual contract can mint / burn tokens during liquidity provisions,
 trades, and liquidations. However, because the function is external, anyone can call it to set
 his or her own malicious address as perp , taking ownership of a contract’s vBase or vQuote
 tokens.

 function transferPerpOwner (address recipient) external {
 if (recipient == address (0)) revert PerpOwnable_TransferZeroAddress();
 if (perp != address (0)) revert PerpOwnable_OwnershipAlreadyClaimed();

 perp = recipient;
 emit PerpOwnerTransferred(msg.sender , recipient);

 }

 Figure 5.1: The transferPerpOwner function in PerpOwnable.sol#L29-L35

 If the call were front-run, the Perpetual contract would not own the vBase or vQuote
 tokens, and any attempts to mint / burn tokens would revert. Since all user interactions
 require the minting or burning of tokens, no liquidity provisions, trades, or liquidations
 would be possible; the market would be effectively unusable. An attacker could launch
 such an attack upon every perpetual market deployment to cause a denial of service (DoS).

 Exploit Scenario
 Alice, an admin of the Increment Protocol, deploys a new Perpetual contract. Alice then
 attempts to call transferPerpOwner to set perp to the address of the deployed contract.
 However, Eve, an attacker monitoring the mempool, sees Alice’s call to
 transferPerpOwner and calls the function with a higher gas price. As a result, Eve gains
 ownership of the virtual tokens and renders the perpetual market useless. Eve then

 Trail of Bits 26 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/utils/PerpOwnable.sol#L29-L35

 repeats the process with each subsequent deployment of a perpetual market, executing a
 DoS attack.

 Recommendations
 Short term, move all functionality from the PerpOwnable contract to the Perpetual
 contract. Then add the hasRole modifier to the transferPerpOwner function so that the
 function can be called only by the manager or governance role.

 Long term, document all cases in which front-running may be possible, along with the
 implications of front-running for the codebase.

 Trail of Bits 27 Increment Protocol Security Assessment
 PUBLIC

 6. Funding payments are made in the wrong token

 Severity: High Difficulty: Low

 Type: Data Validation Finding ID: TOB-INC-6

 Target: contracts/ClearingHouse.sol

 Description
 The funding payments owed to users are made in vBase instead of UA tokens; this results
 in incorrect calculations of users’ profit-and-loss (PnL) values, an increased risk of
 liquidations, and a delay in the convergence of a Perpetual contract’s value with that of
 the underlying base asset.

 When the protocol executes a trade or liquidity provision, one of its first steps is settling
 the funding payments that are due to the calling user. To do that, it calls the
 _settleUserFundingPayments function in the ClearingHouse contract (figure 6.1). The
 function sums the funding payments due to the user (as a trader and / or a liquidity
 provider) across all perpetual markets. Once the function has determined the final funding
 payment due to the user (fundingPayments), the Vault contract’s settlePnL function
 changes the UA balance of the user.

 function _settleUserFundingPayments(address account) internal {
 int256 fundingPayments;
 uint256 numMarkets = getNumMarkets();
 for (uint256 i = 0 ; i < numMarkets;) {

 fundingPayments += perpetuals[i].settleTrader(account) +
 perpetuals[i].settleLp(account);

 unchecked {
 ++i;

 }
 }

 if (fundingPayments != 0) {
 vault.settlePnL(account, fundingPayments);

 }
 }

 Figure 6.1: The _settleUserFundingPayments function in ClearingHouse.sol#L637-651

 Trail of Bits 28 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/ClearingHouse.sol#L637-L651

 Both the Perpetual.settleTrader and Perpetual.settleLp functions internally call
 _getFundingPayments to calculate the funding payment due to the user for a given
 market (figure 6.2).

 function _getFundingPayments(
 bool isLong,
 int256 userCumFundingRate,
 int256 globalCumFundingRate,
 int256 vBaseAmountToSettle

) internal pure returns (int256 upcomingFundingPayment) {
 [...]
 if (userCumFundingRate != globalCumFundingRate) {

 int256 upcomingFundingRate = isLong
 ? userCumFundingRate - globalCumFundingRate
 : globalCumFundingRate - userCumFundingRate;

 // fundingPayments = fundingRate * vBaseAmountToSettle
 upcomingFundingPayment = upcomingFundingRate.wadMul(vBaseAmountToSettle);

 }
 }

 Figure 6.2: The _getFundingPayments function in Perpetual.sol#L1152-1173

 However, the upcomingFundingPayment value is expressed in vBase, since it is the
 product of a percentage, which is unitless, and a vBase token amount,
 vBaseAmountToSettle . Thus, the fundingPayments value that is calculated in
 _settleUserFundingPayments is also expressed in vBase. However, the settlePnL
 function internally updates the user’s balance of UA, not vBase. As a result, the user’s UA
 balance will be incorrect, since the user’s profit or loss may be significantly higher or lower
 than it should be. This discrepancy is a function of the price difference between the vBase
 and UA tokens.

 The use of vBase tokens for funding payments causes three issues. First, when withdrawing
 UA tokens, the user may lose or gain much more than expected. Second, since the UA
 balance affects the user’s collateral reserve total, the balance update may increase or
 decrease the user’s risk of liquidation. Finally, since funding payments are not made in the
 notional asset, the convergence between the mark and index prices may be delayed.

 Exploit Scenario
 The BTC / USD perpetual market’s mark price is significantly higher than the index price.
 Alice, who holds a short position, decides to exit the market. However, the protocol
 calculates her funding payments in BTC and does not convert them to their UA equivalents
 before updating her balance. Thus, Alice makes much less than expected.

 Trail of Bits 29 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1152-L1173

 Recommendations
 Short term, use the vBase.indexPrice() function to convert vBase token amounts to UA
 before the call to vault.settlePnL .

 Long term, expand the unit test suite to cover additional edge cases and to ensure that the
 system behaves as expected.

 Trail of Bits 30 Increment Protocol Security Assessment
 PUBLIC

 7. Excessive dust collection may lead to premature closures of long positions

 Severity: Medium Difficulty: Medium

 Type: Data Validation Finding ID: TOB-INC-7

 Target: contracts/Perpetual.sol

 Description
 The upper bound on the amount of funds considered dust by the protocol may lead to the
 premature closure of long positions.

 The protocol collects dust to encourage complete closures instead of closures that leave a
 position with a small balance of vBase. One place that dust collection occurs is the
 Perpetual contract’s _reducePositionOnMarket function (figure 7.1).

 function _reducePositionOnMarket (
 LibPerpetual.TraderPosition memory user,
 bool isLong ,
 uint256 proposedAmount ,
 uint256 minAmount

)
 internal
 returns (

 int256 baseProceeds ,
 int256 quoteProceeds ,
 int256 addedOpenNotional ,
 int256 pnl

)
 {

 int256 positionSize = int256 (user.positionSize);

 uint256 bought ;
 uint256 feePer ;
 if (isLong) {

 quoteProceeds = -(proposedAmount.toInt256());
 (bought, feePer) = _quoteForBase(proposedAmount, minAmount);
 baseProceeds = bought.toInt256();

 } else {
 (bought, feePer) = _baseForQuote(proposedAmount, minAmount);
 quoteProceeds = bought.toInt256();
 baseProceeds = -(proposedAmount.toInt256());

 }

 Trail of Bits 31 Increment Protocol Security Assessment
 PUBLIC

 int256 netPositionSize = baseProceeds + positionSize;
 if (netPositionSize > 0 && netPositionSize <= 1e17) {

 _donate(netPositionSize.toUint256());
 baseProceeds -= netPositionSize;

 }
 [...]

 }

 Figure 7.1: The _reducePositionOnMarket function in Perpetual.sol#L876-921

 If netPositionSize , which represents a user’s position after its reduction, is between 0
 and 1e17 (1/10 of an 18-decimal token), the system will treat the position as closed and
 donate the dust to the insurance protocol. This will occur regardless of whether the user
 intended to reduce, rather than fully close, the position. (Note that netPositionSize is
 positive if the overall position is long. The dust collection mechanism used for short
 positions is discussed in TOB-INC-11 .)

 However, if netPositionSize is tracking a high-value token, the donation to Insurance
 will no longer be insignificant; 1/10 of 1 vBTC, for instance, would be worth ~USD 2,000 (at
 the time of writing). Thus, the donation of a user’s vBTC dust (and the resultant closure of
 the vBTC position) could prevent the user from profiting off of a ~USD 2,000 position.

 Exploit Scenario
 Alice, who holds a long position in the vBTC / vUSD market, decides to close most of her
 position. After the swap, netPositionSize is slightly less than 1e17. Since a leftover
 balance of that amount is considered dust (unbeknownst to Alice), her ~1e17 vBTC tokens
 are sent to the Insurance contract, and her position is fully closed.

 Recommendations
 Short term, have the protocol calculate the notional value of netPositionSize by
 multiplying it by the return value of the indexPrice function. Then have it compare that
 notional value to the dust thresholds. Note that the dust thresholds must also be
 expressed in the notional token and that the comparison should not lead to a significant
 decrease in a user’s position.

 Long term, document this system edge case to inform users that a fraction of their long
 positions may be donated to the Insurance contract after being reduced.

 Trail of Bits 32 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9f4af7aea63d637e842a1bc4314d00a13b58be24/contracts/Perpetual.sol#L876-L921

 8. Problematic use of primitive operations on fixed-point integers

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-INC-8

 Target: lib/LibMath.sol

 Description
 The protocol’s use of primitive operations over fixed-point signed and unsigned integers
 increases the risk of overflows and undefined behavior.

 The Increment Protocol uses the PRBMathSD59x18 and PRBMathUD60x18 math libraries to
 perform operations over 59x18 signed integers and 60x18 unsigned integers, respectively
 (specifically to perform multiplication and division and to find their absolute values). These
 libraries aid in calculations that involve percentages or ratios or require decimal precision.

 When a smart contract system relies on primitive integers and fixed-point ones, it should
 avoid arithmetic operations that involve the use of both types. For example, using
 x.wadMul(y) to multiply two fixed-point integers will provide a different result than using
 x * y . For that reason, great care must be taken to differentiate between variables that
 are fixed-point and those that are not. Calculations involving fixed-point values should use
 the provided library operations; calculations involving both fixed-point and primitive
 integers should be avoided unless one type is converted to the other.

 However, a number of multiplication and division operations in the codebase use both
 primitive and fixed-point integers. These include those used to calculate the new
 time-weighted average prices (TWAPs) of index and market prices (figure 8.1).

 function _updateTwap () internal {
 uint256 currentTime = block.timestamp ;
 int256 timeElapsed = (currentTime - globalPosition.timeOfLastTrade).toInt256();

 /*
 priceCumulative1 = priceCumulative0 + price1 * timeElapsed

 */

 // will overflow in ~3000 years
 // update cumulative chainlink price feed
 int256 latestChainlinkPrice = indexPrice();
 oracleCumulativeAmount += latestChainlinkPrice * timeElapsed ;

 Trail of Bits 33 Increment Protocol Security Assessment
 PUBLIC

 // update cumulative market price feed
 int256 latestMarketPrice = marketPrice().toInt256();
 marketCumulativeAmount += latestMarketPrice * timeElapsed ;

 uint256 timeElapsedSinceBeginningOfPeriod = block.timestamp -
 globalPosition.timeOfLastTwapUpdate;

 if (timeElapsedSinceBeginningOfPeriod >= twapFrequency) {
 /*

 TWAP = (priceCumulative1 - priceCumulative0) / timeElapsed
 */

 // calculate chainlink twap
 oracleTwap = ((oracleCumulativeAmount -

 oracleCumulativeAmountAtBeginningOfPeriod) /
 timeElapsedSinceBeginningOfPeriod.toInt256()).toInt128() ;

 // calculate market twap
 marketTwap = ((marketCumulativeAmount -

 marketCumulativeAmountAtBeginningOfPeriod) /
 timeElapsedSinceBeginningOfPeriod.toInt256()).toInt128() ;

 // reset cumulative amount and timestamp
 oracleCumulativeAmountAtBeginningOfPeriod = oracleCumulativeAmount;
 marketCumulativeAmountAtBeginningOfPeriod = marketCumulativeAmount;
 globalPosition.timeOfLastTwapUpdate = block.timestamp .toUint64();

 emit TwapUpdated(oracleTwap, marketTwap);
 }

 }

 Figure 8.1: The _updateTwap function in Perpetual.sol#L1071-1110

 Similarly, the _getUnrealizedPnL function in the Perpetual contract calculates the
 tradingFees value by multiplying a primitive and a fixed-point integer (figure 8.2).

 function _getUnrealizedPnL(LibPerpetual.TraderPosition memory trader) internal view
 returns (int256) {

 int256 oraclePrice = indexPrice();
 int256 vQuoteVirtualProceeds = int256 (trader.positionSize).wadMul(oraclePrice);
 int256 tradingFees = (vQuoteVirtualProceeds.abs() * market.out_fee().toInt256())

 / CURVE_TRADING_FEE_PRECISION; // @dev: take upper bound on the trading fees

 // in the case of a LONG, trader.openNotional is negative but
 vQuoteVirtualProceeds is positive

 // in the case of a SHORT, trader.openNotional is positive while
 vQuoteVirtualProceeds is negative

 return int256 (trader.openNotional) + vQuoteVirtualProceeds - tradingFees;
 }

 Trail of Bits 34 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1071-L1110

 Figure 8.2: The _getUnrealizedPnL function in Perpetual.sol#L1175-1183

 These calculations can lead to unexpected overflows or cause the system to enter an
 undefined state. Note that there are other such calculations in the codebase that are not
 documented in this finding.

 Recommendations
 Short term, identify all state variables that are fixed-point signed or unsigned integers.
 Additionally, ensure that all multiplication and division operations involving those state
 variables use the wadMul and wadDiv functions, respectively. If the Increment Finance
 team decides against using wadMul or wadDiv in any of those operations (whether to
 optimize gas or for another reason), it should provide inline documentation explaining that
 decision.

 Trail of Bits 35 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1175-L1183

 9. Liquidations are vulnerable to sandwich attacks

 Severity: Medium Difficulty: High

 Type: Timing Finding ID: TOB-INC-9

 Target: contracts/ClearingHouse.sol

 Description
 Token swaps that are performed to liquidate a position use a hard-coded zero as the
 “minimum-amount-out” value, making them vulnerable to sandwich attacks.

 The minimum-amount-out value indicates the minimum amount of tokens that a user will
 receive from a swap. The value is meant to provide protection against pool illiquidity and
 sandwich attacks. Senders of position and liquidity provision updates are allowed to specify
 a minimum amount out. However, the minimum-amount-out value used in liquidations of
 both traders’ and liquidity providers’ positions is hard-coded to zero. Figures 9.1 and 9.2
 show the functions that perform these liquidations (_liquidateTrader and
 _liquidateLp , respectively).

 function _liquidateTrader(
 uint256 idx,
 address liquidatee,
 uint256 proposedAmount

) internal returns (int256 pnL, int256 positiveOpenNotional) {
 (positiveOpenNotional) = int256 (_getTraderPosition(idx,

 liquidatee).openNotional).abs();

 LibPerpetual.Side closeDirection = _getTraderPosition(idx,
 liquidatee).positionSize >= 0

 ? LibPerpetual.Side.Short
 : LibPerpetual.Side.Long;

 // (liquidatee, proposedAmount)
 (, , pnL,) = perpetuals[idx].changePosition(liquidatee, proposedAmount, 0 ,

 closeDirection, true);

 // traders are allowed to reduce their positions partially, but liquidators have
 to close positions in full

 if (perpetuals[idx].isTraderPositionOpen(liquidatee))
 revert ClearingHouse_LiquidateInsufficientProposedAmount();

 return (pnL, positiveOpenNotional);
 }

 Trail of Bits 36 Increment Protocol Security Assessment
 PUBLIC

 Figure 9.1: The _liquidateTrader function in ClearingHouse.sol#L522-541

 function _liquidateLp (
 uint256 idx ,
 address liquidatee ,
 uint256 proposedAmount

) internal returns (int256 pnL , int256 positiveOpenNotional) {
 positiveOpenNotional = _getLpOpenNotional(idx, liquidatee).abs();

 // close lp
 (pnL, ,) = perpetuals[idx].removeLiquidity(

 liquidatee,
 _getLpLiquidity(idx, liquidatee),
 [uint256 (0), uint256 (0)] ,
 proposedAmount,
 0 ,
 true

);
 _distributeLpRewards(idx, liquidatee);

 return (pnL, positiveOpenNotional);
 }

 Figure 9.2: The _liquidateLp function in ClearingHouse.sol#L543-562

 Without the ability to set a minimum amount out, liquidators are not guaranteed to receive
 any tokens from the pool during a swap. If a liquidator does not receive the correct amount
 of tokens, he or she will be unable to close the position, and the transaction will revert; the
 revert will also prolong the Increment Protocol’s exposure to debt. Moreover, liquidators
 will be discouraged from participating in liquidations if they know that they may be subject
 to sandwich attacks and may lose money in the process.

 Exploit Scenario
 Alice, a liquidator, notices that a position is no longer valid and decides to liquidate it. When
 she sends the transaction, the protocol sets the minimum-amount-out value to zero. Eve’s
 sandwich bot identifies Alice’s liquidation as a pure profit opportunity and sandwiches it
 with transactions. Alice’s liquidation fails, and the protocol remains in a state of debt.

 Recommendations
 Short term, allow liquidators to specify a minimum-amount-out value when liquidating the
 positions of traders and liquidity providers.

 Long term, document all cases in which front-running may be possible, along with the
 implications of front-running for the codebase.

 Trail of Bits 37 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/ClearingHouse.sol#L522-L541
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/ClearingHouse.sol#L543-L562

 10. Accuracy of market and oracle TWAPs is tied to the frequency of user
 interactions

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-INC-10

 Target: contracts/ClearingHouse.sol

 Description
 The oracle and market TWAPs can be updated only during traders’ and liquidity providers’
 interactions with the protocol; a downtick in user interactions will result in less accurate
 TWAPs that are more susceptible to manipulation.

 The accuracy of a TWAP is related to the number of data points available for the average
 price calculation. The less often prices are logged, the less robust the TWAP becomes. In
 the case of the Increment Protocol, a TWAP can be updated with each block that contains a
 trader or liquidity provider interaction. However, during a market slump (i.e., a time of
 reduced network traffic), there will be fewer user interactions and thus fewer price
 updates.

 TWAP updates are performed by the Perpetual._updateTwap function, which is called by
 the internal Perpetual._updateGlobalState function. Other protocols, though, take a
 different approach to keeping markets up to date. The Compound Protocol, for example,
 has an accrueInterest function that is called upon every user interaction but is also a
 standalone public function that anyone can call.

 Recommendations
 Short term, create a public updateGlobalState function that anyone can call to internally
 call _updateGlobalState .

 Long term, create an off-chain worker that can alert the team to periods of perpetual
 market inactivity, ensuring that the team knows to update the market accordingly.

 Trail of Bits 38 Increment Protocol Security Assessment
 PUBLIC

 11. Liquidations of short positions may fail because of insu�cient dust
 collection

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-INC-11

 Target: contracts/Perpetual.sol

 Description
 Because the protocol does not collect the dust associated with short positions, attempts to
 fully close and then liquidate those positions will fail.

 One of the key requirements for the successful liquidation of a position is the closure of the
 entire position; in other words, by the end of the transaction, the debt and assets of the
 trader or liquidity provider must be zero. The process of closing a long position is a
 straightforward one, since identifying the correct proposedAmount value (the amount of
 tokens to be swapped) is trivial. Finding the correct proposedAmount for a short position,
 however, is more complex .

 If the proposedAmount estimate is incorrect, the transaction will result in leftover dust,
 which the protocol will attempt to collect (figure 11.1).

 function _reducePositionOnMarket (
 LibPerpetual.TraderPosition memory user,
 bool isLong ,
 uint256 proposedAmount ,
 uint256 minAmount

)
 internal
 returns (

 int256 baseProceeds ,
 int256 quoteProceeds ,
 int256 addedOpenNotional ,
 int256 pnl

)
 {

 int256 positionSize = int256 (user.positionSize);

 uint256 bought ;
 uint256 feePer ;
 if (isLong) {

 quoteProceeds = -(proposedAmount.toInt256());

 Trail of Bits 39 Increment Protocol Security Assessment
 PUBLIC

https://increment-team.gitbook.io/developer-docs/guides/how-choose-proposedamount

 (bought, feePer) = _quoteForBase(proposedAmount, minAmount);
 baseProceeds = bought.toInt256();

 } else {
 (bought, feePer) = _baseForQuote(proposedAmount, minAmount);
 quoteProceeds = bought.toInt256();
 baseProceeds = -(proposedAmount.toInt256());

 }

 int256 netPositionSize = baseProceeds + positionSize;
 if (netPositionSize > 0 && netPositionSize <= 1e17) {

 _donate(netPositionSize.toUint256());
 baseProceeds -= netPositionSize;

 }
 [...]

 }

 Figure 11.1: The _reducePositionOnMarket function in Perpetual.sol#L876-921

 The protocol will collect leftover dust only if netPositionSize is greater than zero, which
 is possible only if the position that is being closed is a long one. If a short position is left
 with any dust, it will not be collected, since netPositionSize will be less than zero.

 This inconsistency has a direct impact on the success of liquidations, because a position
 must be completely closed in order for a liquidation to occur; no dust can be left over.
 When liquidating the position of a liquidity provider, the Perpetual contract’s
 _settleLpPosition function checks whether netBasePosition is less than zero (as
 shown in figure 11.2). If it is, the liquidation will fail. Because the protocol does not collect
 dust from short positions, the netBasePosition value of such a position may be less than
 zero. The ClearingHouse._liquidateTrader function, called to liquidate traders’
 positions, enforces a similar requirement regarding total closures.

 function _settleLpPosition (
 LibPerpetual.TraderPosition memory positionToClose,
 uint256 proposedAmount ,
 uint256 minAmount ,
 bool isLiquidation

) internal returns (int256 pnl , int256 quoteProceeds) {
 int256 baseProceeds ;

 (baseProceeds, quoteProceeds, , pnl) = _reducePositionOnMarket(
 positionToClose,
 !(positionToClose.positionSize > 0),
 proposedAmount,
 minAmount

);
 [...]
 int256 netBasePosition = positionToClose.positionSize + baseProceeds;

 Trail of Bits 40 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9f4af7aea63d637e842a1bc4314d00a13b58be24/contracts/Perpetual.sol#L876-L921

 if (netBasePosition < 0) revert Perpetual_LPOpenPosition();
 if (netBasePosition > 0 && netBasePosition <= 1e17)

 _donate(netBasePosition.toUint256());
 }

 Figure 11.2: The _settleLpPosition function in Perpetual.sol#L1005-1030

 If the liquidation of a position fails, any additional attempts at liquidation will lower the
 liquidator’s profit margin, which might dissuade the liquidator from trying again.
 Additionally, failed liquidations prolong the protocol’s exposure to debt.

 Exploit Scenario
 Alice, a liquidator, notices that a short position is no longer valid and decides to liquidate it.
 However, Alice sets an incorrect proposedAmount value, so the position is left with some
 dust. Because the protocol does not collect the dust of short positions, the liquidation fails.
 As a result, Alice loses money—and the loss dissuades her from attempting to liquidate any
 other undercollateralized positions.

 Recommendations
 Short term, take the following steps:

 1. Implement the short-term recommendation outlined in TOB-INC-7 to prevent the
 collection of an excessive amount of dust.

 2. When the protocol is liquidating a short position, take the absolute value of
 netPositionSize and check whether it can be considered dust. If it can, zero out
 the position’s balance, but do not donate the position’s balance to the Insurance
 contract. A non-zero netPositionSize for a short position means that the position
 holds a debt, and that debt should not be transferred to insurance.

 3. Remove the checks of netBasePosition from the _settleLpPosition function.
 (The changes made in the first two steps will render them redundant.)

 4. Add a check of the _isTraderPositionOpen function’s return value at the end of
 the _liquidateLp function to ensure that the account’s openNotional and
 positionSize values are equal to zero.

 Long term, implement the long-term recommendation outlined in TOB-INC-7 . Additionally,
 document the fact that a liquidator should use the CurveCryptoViews.get_dy_ex_fees
 function to obtain an accurate estimate of the proposedAmount value before attempting
 to close a short position.

 Trail of Bits 41 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L1005-L1030

 12. Project dependencies contain vulnerabilities

 Severity: Low Difficulty: High

 Type: Patching Finding ID: TOB-INC-12

 Target: increment-protocol

 Description
 Although dependency scans did not identify a direct threat to the project under review,
 yarn audit identified dependencies with known vulnerabilities. Due to the sensitivity of
 the deployment code and its environment, it is important to ensure that dependencies are
 not malicious. Problems with dependencies in the JavaScript community could have a
 significant effect on the repository under review. The output below details the high-severity
 vulnerabilities:

 CVE ID Description Dependency

 CVE-2021-23358 Arbitrary code injection vulnerability underscore

 CVE-2021-43138 Prototype pollution async

 CVE-2021-23337 Command injection vulnerability lodash

 CVE-2022-0235 “ node-fetch is vulnerable to
 exposure of sensitive information to

 an unauthorized actor”

 node-fetch

 Figure 12.1: Advisories affecting increment-protocol dependencies

 Exploit Scenario
 Alice installs the dependencies of the in-scope repository on a clean machine.
 Unbeknownst to Alice, a dependency of the project has become malicious or exploitable.
 Alice subsequently uses the dependency, disclosing sensitive information to an unknown
 actor.

 Recommendations
 Short term, ensure that the Increment Protocol dependencies are up to date. Several node
 modules have been documented as malicious because they execute malicious code when
 installing dependencies to projects. Keep modules current and verify their integrity after
 installation.

 Trail of Bits 42 Increment Protocol Security Assessment
 PUBLIC

https://nvd.nist.gov/vuln/detail/CVE-2021-23358
https://nvd.nist.gov/vuln/detail/CVE-2021-43138
https://nvd.nist.gov/vuln/detail/CVE-2021-23337
https://nvd.nist.gov/vuln/detail/CVE-2022-0235

 Long term, integrate automated dependency auditing into the development workflow. If a
 dependency cannot be updated when a vulnerability is disclosed, ensure that the code
 does not use and is not affected by the vulnerable functionality of the dependency.

 Trail of Bits 43 Increment Protocol Security Assessment
 PUBLIC

 13. Risks associated with oracle outages

 Severity: Informational Difficulty: High

 Type: Configuration Finding ID: TOB-INC-13

 Target: increment-protocol

 Description
 Under extreme market conditions, the Chainlink oracle may cease to work as expected,
 causing unexpected behavior in the Increment Protocol.

 Such oracle issues have occurred in the past. For example, during the LUNA market crash,
 the Venus protocol was exploited because Chainlink stopped providing up-to-date prices.
 The interruption occurred because the price of LUNA dropped below the minimum price
 (minAnswer) allowed by the LUNA / USD price feed on the BNB chain. As a result, all oracle
 updates reverted. Chainlink’s automatic circuit breakers , which pause price feeds during
 extreme market conditions, could pose similar problems.

 Note that these kinds of events cannot be tracked on-chain. If a price feed is paused,
 updatedAt will still be greater than zero, and answeredInRound will still be equal to
 roundID .

 Thus, the Increment Finance team should implement an off-chain monitoring solution to
 detect any anomalous behavior exhibited by Chainlink oracles. The monitoring solution
 should check for the following conditions and issue alerts if they occur, as they may be
 indicative of abnormal market events:

 ● An asset price that is approaching the minAnswer or maxAnswer value

 ● The suspension of a price feed by an automatic circuit breaker

 ● Any large deviations in the price of an asset

 References
 ● Chainlink: Risk Mitigation

 ● Chainlink: Monitoring Data Feeds

 ● Chainlink: Circuit Breakers

 Trail of Bits 44 Increment Protocol Security Assessment
 PUBLIC

https://blog.venus.io/venus-protocol-official-statement-regarding-luna-6eb45c3cb058
https://bscscan.com/address/0xec72d46011d67a6ac4fa7d3f476fa2049dc807ee
https://docs.chain.link/docs/selecting-data-feeds/#risk-mitigation
https://docs.chain.link/docs/selecting-data-feeds/#risk-mitigation
https://docs.chain.link/docs/using-chainlink-reference-contracts/#monitoring-data-feeds
https://blog.chain.link/circuit-breakers-and-client-diversity-within-the-chainlink-network/

 Summary of Recommendations

 The Increment Protocol is a work in progress with multiple planned iterations. Trail of Bits
 recommends that Increment Finance address the findings detailed in this report and take
 the following additional steps prior to deployment:

 ● Identify and analyze all system properties that are expected to hold.

 ● Use Echidna to test and validate those system properties.

 ● Develop a detailed incident response plan to ensure that any issues that arise can
 be addressed promptly and without confusion. (See appendix D for related
 recommendations.)

 ● Ensure that all potential front-running, sandwiching, and arbitrage opportunities are
 either mitigated or thoroughly documented.

 ● Ensure that all fixed-point arithmetic is performed correctly and with the provided
 library operations.

 Trail of Bits 45 Increment Protocol Security Assessment
 PUBLIC

https://github.com/crytic/echidna

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 46 Increment Protocol Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 47 Increment Protocol Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Decentralization The presence of a decentralized governance structure for mitigating
 insider threats and managing risks posed by contract upgrades

 Documentation The presence of comprehensive and readable codebase documentation

 Front-Running
 Resistance

 The system’s resistance to front-running attacks

 Low-Level
 Manipulation

 The justified use of inline assembly and low-level calls

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Trail of Bits 48 Increment Protocol Security Assessment
 PUBLIC

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 49 Increment Protocol Security Assessment
 PUBLIC

 C. Multisignature Wallet Best Practices

 Consensus requirements for sensitive actions such as spending the funds in a wallet are
 meant to mitigate the risk of

 ● any one person’s judgment overruling the others’,

 ● any one person’s mistake causing a failure, and

 ● the compromise of any one person’s credentials causing a failure.

 In a 2-of-3 multisignature Ethereum wallet, for example, the execution of a “spend”
 transaction requires the consensus of two individuals in possession of two of the wallet’s
 three private keys. For this model to be useful, it must fulfill the following requirements:

 1. The private keys must be stored or held separately, and access to each one must be
 limited to a different individual.

 2. If the keys are physically held by third-party custodians (e.g., a bank), multiple keys
 should not be stored with the same custodian. (Doing so would violate requirement
 #1.)

 3. The person asked to provide the second and final signature on a transaction (i.e.,
 the co-signer) ought to refer to a pre-established policy specifying the conditions for
 approving the transaction by signing it with his or her key.

 4. The co-signer also ought to verify that the half-signed transaction was generated
 willfully by the intended holder of the first signature’s key.

 Requirement #3 prevents the co-signer from becoming merely a “deputy” acting on behalf
 of the first signer (forfeiting the decision-making responsibility to the first signer and
 defeating the security model). If the co-signer can refuse to approve the transaction for any
 reason, the due-diligence conditions for approval may be unclear. That is why a policy for
 validating transactions is needed. A verification policy could include the following:

 ● A protocol for handling a request to co-sign a transaction (e.g., a half-signed
 transaction will be accepted only via an approved channel)

 ● A whitelist of specific Ethereum addresses allowed to be the payee of a transaction

 ● A limit on the amount of funds spent in a single transaction, or in a single day

 Trail of Bits 50 Increment Protocol Security Assessment
 PUBLIC

 Requirement #4 mitigates the risks associated with a single stolen key. For example, say
 that an attacker somehow acquired the unlocked Ledger Nano S of one of the signatories.
 A voice call from the co-signer to the initiating signatory to confirm the transaction would
 reveal that the key had been stolen and that the transaction should not be co-signed. If the
 signatory were under an active threat of violence, he or she could use a “ duress code ” (a
 code word, a phrase, or another signal agreed upon in advance) to covertly alert the others
 that the transaction had not been initiated willfully, without alerting the attacker.

 Trail of Bits 51 Increment Protocol Security Assessment
 PUBLIC

https://en.wikipedia.org/wiki/Duress_code

 D. Incident Response Plan Recommendations

 This section provides recommendations on formulating an incident response plan.

 ● Identify the parties (either specific people or roles) responsible for
 implementing the mitigations when an issue occurs (e.g., deploying smart
 contracts, pausing contracts, upgrading the front end, etc.).

 ● Document internal processes for addressing situations in which a deployed
 remedy does not work or introduces a new bug.

 ○ Consider documenting a plan of action for handling failed remediations.

 ● Clearly describe the intended contract deployment process.

 ● Outline the circumstances under which Increment Finance will compensate
 users affected by an issue (if any).

 ○ Issues that warrant compensation could include an individual or aggregate
 loss or a loss resulting from user error, a contract flaw, or a third-party
 contract flaw.

 ● Document how the team plans to stay up to date on new issues that could
 affect the system; awareness of such issues will inform future development
 work and help the team secure the deployment toolchain and the external
 on-chain and off-chain services that the system relies on.

 ○ Identify sources of vulnerability news for each language and component
 used in the system, and subscribe to updates from each source. Consider
 creating a private Discord channel in which a bot will post the latest
 vulnerability news; this will provide the team with a way to track all updates
 in one place. Lastly, consider assigning certain team members to track news
 about vulnerabilities in specific components of the system.

 ● Determine when the team will seek assistance from external parties (e.g.,
 auditors, affected users, other protocol developers, etc.) and how it will
 onboard them.

 ○ Effective remediation of certain issues may require collaboration with
 external parties.

 Trail of Bits 52 Increment Protocol Security Assessment
 PUBLIC

 ● Define contract behavior that would be considered abnormal by off-chain
 monitoring solutions.

 It is best practice to perform periodic dry runs of scenarios outlined in the incident
 response plan to find omissions and opportunities for improvement and to develop
 “muscle memory.” Additionally, document the frequency with which the team should
 perform dry runs of various scenarios, and perform dry runs of more likely scenarios more
 regularly. Create a template to be filled out with descriptions of any necessary
 improvements after each dry run.

 Trail of Bits 53 Increment Protocol Security Assessment
 PUBLIC

 E. Code Quality Recommendations

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 ● Replace the conditional expression of form highlighted in figure E.1 with the
 equivalent expression highlighted in figure E.2.

 uint256 tokenIdx = tokenToCollateralIdx[withdrawToken];
 if (!((tokenIdx != 0) || (address (withdrawToken) == address (UA)))) revert
 Vault_UnsupportedCollateral();

 Figure E.1: The conditional expression used to verify the validity of a collateral token in
 Vault.sol#L86-L87

 uint256 tokenIdx = tokenToCollateralIdx[withdrawToken];
 if ((tokenIdx == 0) && (address (withdrawToken) != address (UA))) revert
 Vault_UnsupportedCollateral();

 Figure E.2: The proposed improvement to the code in figure E.1

 ● Update the code documentation so that it accurately describes the
 implementation.

 The code documentation highlighted in figure E.3 indicates that balance amounts
 may not have 18 decimals. However, balance amounts are converted to 18-decimal
 precision before they are added to the mapping.

 // user => collateralIdx => balance (might not be 18 decimals)
 mapping (address => mapping (uint256 => int256)) private balances;

 Figure E.3: An inaccuracy in Vault.sol#L45-L46

 The code documentation in figure E.4 is not applicable to the current
 implementation, since the vulnerability is no longer exploitable and there is no
 _checkProposedAmount() function in the codebase.

 /*
 ...
 @audit Note that this mechanism can be exploited by inserting a large value here,
 since traders

 will encounter slippage on the curve trading pool. We set a limit of 1.5 x
 market value in _checkProposedAmount()
 */

 Trail of Bits 54 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Vault.sol#L86-L87
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Vault.sol#L45-L46

 Figure E.4: An inapplicable code comment in the Perpetual contract
 (Perpetual.sol#L843-844)

 ● Rename the tokenAmount variable to wadAmount . The latter name will make it
 clear that the amount is converted to 18-decimal precision before the variable’s
 assignment.

 uint256 tokenAmount =
 LibReserve.tokenToWad(whiteListedCollaterals[tokenIdx].decimals, amount);

 Figure E.5: A snippet of the withdraw function in Vault.sol#L108

 ● Remove the tokenIdx check from Vault._withdraw . The tokenIdx value is
 already checked in withdraw and withdrawAll .

 uint256 tokenIdx = tokenToCollateralIdx[withdrawToken];
 if (!((tokenIdx != 0) || (address (withdrawToken) == address (UA)))) revert
 Vault_UnsupportedCollateral();

 Figure E.6: A snippet of the _withdraw function in Vault.sol#L367-368

 ● Update the bounds of the insuranceFee parameter in the following
 conditional expression to reflect the documentation. The documentation
 indicates that the valid range for insurance fees is [0.001%, 0.1%], which is equal to
 [1e13, 1e14], not [1e14 , 1e16].

 if (params.insuranceFee < 1e14 || params.insuranceFee > 1e16)
 revert Perpetual_InsuranceFeeInvalid(params.insuranceFee);

 Figure E.7: A snippet of the setParameters function in Perpetual.sol#L467-468

 Trail of Bits 55 Increment Protocol Security Assessment
 PUBLIC

https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L843-L844
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Vault.sol#L108
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Vault.sol#L367-L368
https://increment-team.gitbook.io/developer-docs/economic-parameters#:~:text=%5B100%2C%20inf%5D-,insuranceFee,-fee%20charge%20on
https://github.com/Increment-Finance/increment-protocol/blob/9368b23ac2d2f5dc954cc849d20cdeca21d627c6/contracts/Perpetual.sol#L467-L468

