
Public

SMART CONTRACT AUDIT REPORT

for

Increment Protocol

Prepared By: Xiaomi Huang

PeckShield
June 14, 2022

1/20 PeckShield Audit Report #: 2022-241

contact@peckshield.com

Public

Document Properties

Client Increment Finance
Title Smart Contract Audit Report
Target Increment Protocol
Version 1.0
Author Xuxian Jiang
Auditors Xiaotao Wu, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 June 14, 2022 Xuxian Jiang Final Release
1.0-rc1 June 12, 2022 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2022-241

Public

Contents

1 Introduction 4
1.1 About Increment . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Incorrect Withdrawal Logic in Vault::withdrawPartial() 11
3.2 Improved Insurance Logic in Insurance::removeInsurance() 12
3.3 Improved Validation Logic in ClearingHouse::setMinMargin() 13
3.4 Proper Trading Fee Settlement in _settleLpTradingFees() 14
3.5 Trust Issue of Admin Keys . 15
3.6 Removal of Redundant State And Code . 17

4 Conclusion 18

References 19

3/20 PeckShield Audit Report #: 2022-241

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Increment protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Increment

USD-pegged stablecoins currently dominate the stablecoin supply in DeFi. This creates tremendous
exchange rate risks for global non-USD participants. Increment builds global exchange rate products
on zkSync 2.0 to unleash the power of DeFi for citizens around the world. In particular, the protocol
utilizes pooled virtual assets and Curve V2’s CryptoSwap AMM as the trading engine to enable multi-
currency perpetual swaps such that DeFi users can hedge their USD exposure or speculate on global
currency movements through on-chain perpetual swaps. The basic information of the audited protocol
is as follows:

Table 1.1: Basic Information of The Increment Protocol

Item Description
Name Increment Finance

Website https://increment.finance/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 14, 2022

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

4/20 PeckShield Audit Report #: 2022-241

Public

• https://github.com/Increment-Finance/increment-peckshield.git (8efaf7b)

And here is the commit ID after fixes for the issues found in the audit have been checked in:

• https://github.com/Increment-Finance/increment-peckshield.git (51b9712)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/20 PeckShield Audit Report #: 2022-241

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2022-241

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2022-241

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2022-241

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Increment protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 1

High 1

Medium 1

Low 2

Informational 1

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/20 PeckShield Audit Report #: 2022-241

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 critical-severity vulner-
ability, 1 high-severity vulnerability, 1 medium-severity vulnerabilities, 2 low-severity vulnerabilities,
and 1 informational suggestion.

Table 2.1: Key Increment Protocol Audit Findings

ID Severity Title Category Status
PVE-001 Critical Incorrect Withdrawal Logic in

Vault::withdrawPartial()
Business Logic Resolved

PVE-002 Low Improved Insurance Logic in Insur-
ance::removeInsurance()

Business Logic Resolved

PVE-003 Low Improved Validation Logic in Clearing-
House::setMinMargin()

Coding Practices Resolved

PVE-004 High Proper Trading Fee Settlement in _-
settleLpTradingFees()

Business Logic Resolved

PVE-005 Medium Trust Issue of Admin Keys Security Features Mitigated
PVE-006 Informational Removal of Redundant State And

Code
Coding Practices Resolved

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/20 PeckShield Audit Report #: 2022-241

Public

3 | Detailed Results

3.1 Incorrect Withdrawal Logic in Vault::withdrawPartial()

• ID: PVE-001

• Severity: Critical

• Likelihood: High

• Impact: High

• Target: Vault

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In Increment, there is a Vault contract that is designed to keep track of all token reserves for all
markets. Accordingly, the Vault contract supports the interaction with users, including their deposits
and withdraws. While examining the current withdrawal logic, we notice the current implementation
needs to be improved.

To elaborate, we show below the implementation of the withdrawPartial() function. By design,
the current logic allows the user to withdraw share of tokens from the user account across multi-
collaterals. It comes to our attention that this function makes use of the following two local variables,
including amountToWithdraw and wadCollateralBalance. The first one calculates the dollar-denominated
withdrawal value while the second computes the collateral balance denominated in the collateral asset.
However, these two variables are directly compared for the actual collateral withdrawal (line 144)!
To fix, there is a need to use the same denomination before they can be used for comparision.

123 function withdrawPartial(
124 uint256 marketIdx ,
125 address user ,
126 uint256 reductionRatio ,
127 bool isTrader
128) external override onlyClearingHouse {
129 if (reductionRatio > 1e18) revert Vault_WithdrawReductionRatioTooHigh ();
130
131 // the amount to withdraw accross all collateral
132 int256 reserveValue = _getUserReserveValue(marketIdx , user , isTrader);
133 int256 amountToWithdraw = reserveValue.wadMul(reductionRatio.toInt256 ());

11/20 PeckShield Audit Report #: 2022-241

Public

134
135 Collateral [] memory collaterals = whiteListedCollaterals;
136 int256 collateralBalance;
137 int256 wadCollateralBalance;
138 int256 tokenAmountToWithdraw;
139
140 for (uint256 i = collaterals.length; i > 0; i--) {
141 collateralBalance = isTrader ? traderBalances[user][marketIdx][i - 1] :

lpBalances[user][marketIdx][i - 1];
142 wadCollateralBalance = LibReserve.tokenToWad(collaterals[i - 1]. decimals ,

collateralBalance);
143
144 if (wadCollateralBalance >= amountToWithdraw) {
145 tokenAmountToWithdraw = LibReserve.wadToToken(collaterals[i - 1].

decimals , amountToWithdraw);
146
147 withdraw(marketIdx , user , tokenAmountToWithdraw.toUint256 (), collaterals

[i - 1].asset , isTrader);
148 break;
149 } else {
150 withdraw(marketIdx , user , collateralBalance.toUint256 (), collaterals[i -

1].asset , isTrader);
151 amountToWithdraw -= wadCollateralBalance;
152 }
153 }
154 }

Listing 3.1: Vault::withdrawPartial()

Recommendation Revise the above logic to ensure amountToWithdraw and wadCollateralBalance

are converted to the same denomination before their comparison.

Status This issue has been fixed in the following commit: f9c37f8.

3.2 Improved Insurance Logic in Insurance::removeInsurance()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Insurance

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Increment protocol has a built-in Insurance contract that can be used to pay out Vault in case
of default. While analyzing the logic behind the Insurance contract, we observe one of its functions
(i.e., removeInsurance()) can be improved.

12/20 PeckShield Audit Report #: 2022-241

https://github.com/Increment-Finance/increment-peckshield/pull/1/commits/f9c37f8

Public

To elaborate, we show below the implementation of this removeInsurance() function. As the
name indicates, this function is used to withdraw the remaining balance of the contract and by
design can only be called by the owner of the contract. To ensure the removed amount is indeed part
of the remaining balance, there is a validation check, i.e., (lockedInsurance - amount)< tvl.wadMul

(clearingHouse.insuranceRatio()) (line 88), which can be improved as follows: (lockedInsurance

<= amount)|| ((lockedInsurance - amount)< tvl.wadMul(clearingHouse.insuranceRatio())). In other
words, to ensure it cannot withdraw more funds from insurance than the available funds, we suggest
to add the explicit validation.

84 function removeInsurance(uint256 amount) external override onlyOwner {
85 // check insurance ratio after withdrawal
86 uint256 tvl = vault.getTotalValueLocked ();
87 uint256 lockedInsurance = token.balanceOf(address(this));
88 if ((lockedInsurance - amount) < tvl.wadMul(clearingHouse.insuranceRatio ()))
89 revert Insurance_InsufficientInsurance ();
90
91 // withdraw
92 emit InsuranceRemoved(amount);
93 IERC20Metadata(token).safeTransfer(msg.sender , amount);
94 }

Listing 3.2: Insurance::removeInsurance()

Recommendation Revise the above removeInsurance() to add the explicit check on lockedInsurance

>=amount.

Status This issue has been fixed in the following commit: 4b8f123.

3.3 Improved Validation Logic in
ClearingHouse::setMinMargin()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ClearingHouse

• Category: Coding Practices [6]

• CWE subcategory: CWE-1041 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Increment protocol is no exception. Specifically, if we examine the ClearingHouse con-
tract, it has defined a number of protocol-wide risk parameters, such as minMargin and minMarginAtCreation

. In the following, we show the corresponding routines that allow for their changes.

13/20 PeckShield Audit Report #: 2022-241

https://github.com/Increment-Finance/increment-peckshield/pull/1/commits/4b8f123

Public

422 f unc t i on setMinMarg in (int256 newMinMargin) ex te rna l o v e r r i d e onlyOwner {
423 i f (newMinMargin < 25 e15) r e ve r t C l e a r i n gHou s e_ In su f f i c i e n tM inMa rg i n () ;
424 i f (newMinMargin > 3e17) r e ve r t Clea r ingHouse_Exces s i veMinMarg in () ;
425
426 minMargin = newMinMargin ;
427 emit MinMarginChanged (newMinMargin) ;
428 }
429
430 f unc t i on s e tMinMarg inAtCrea t i on (int256 newMinMarginAtCreat ion) ex te rna l o v e r r i d e

onlyOwner {
431 i f (newMinMarginAtCreat ion <= minMargin) r e ve r t

C l e a r i n gHou s e_ In su f f i c i e n tM inMa rg i n () ;
432 i f (newMinMarginAtCreat ion > 5e17) r e ve r t Clea r ingHouse_Exces s i veMinMarg in () ;
433
434 minMarg inAtCreat ion = newMinMarginAtCreat ion ;
435 emit MinMarginAtCreat ionChanged (newMinMarginAtCreat ion) ;
436 }

Listing 3.3: ClearingHouse :: setMinMargin() and ClearingHouse :: setMinMarginAtCreation()

These parameters define various aspects of the protocol operation and maintenance and need to
exercise extra care when configuring or updating them. Our analysis shows the update logic on these
parameters can be improved by applying more rigorous sanity checks. Based on the current implemen-
tation, certain corner cases may lead to an undesirable consequence. For example, an unlikely mis-
configuration of newMinMargin may set it smaller than another related parameter minMarginAtCreation,
hence violating the protocol design and potentially leading to unexpected execution outcome.

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range.

Status This issue has been fixed in the following commit: c1340e8.

3.4 Proper Trading Fee Settlement in _settleLpTradingFees()

• ID: PVE-004

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: Perpetual

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

At the core of Increment is the Perpetual contract that implements the intended perpetual swap, which
handles all the trading logic and interact with the CryptoSwap pool. While examining the liquidity-
related operations, including addition or removal, we notice an issue in the current implementation.

14/20 PeckShield Audit Report #: 2022-241

https://github.com/Increment-Finance/increment-peckshield/pull/1/commits/c1340e8

Public

In the following, we show below the related helper routine _settleLpTradingFees(), which is used
to settle the trader’s trading fee. It has a rather straightforward logic in calling another helper
routine _getLpTradingFees() to compute the trader’s fee in tradingFeesEarned. However, the current
implementation fails to update the accounting on the trader’s totalTradingFeesGrowth. In other
words, there is a need to add the following statement before returning from the function: lp.

totalTradingFeesGrowth = global.totalTradingFeesGrowth.

934 function _settleLpTradingFees(
935 LibPerpetual.LiquidityProviderPosition storage lp,
936 LibPerpetual.GlobalPosition storage global
937) internal view returns (uint256 tradingFeesEarned) {
938 // settle lp trading fees
939 tradingFeesEarned = _getLpTradingFees(lp, global);

941 // reset lp.totalTradingFeesGrowth := trading fees index
942 global.totalTradingFeesGrowth;

944 return tradingFeesEarned;
945 }

Listing 3.4: Perpetual::_settleLpTradingFees()

Recommendation Properly update the trader’s totalTradingFeesGrowth to settle down the
trader’s fee.

Status This issue has been fixed in the following commit: 612226e.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In Increment, there is a privileged administrative account owner. This administrative account plays
a critical role in governing and regulating the protocol-wide operations. It also has the privilege
to control or govern the flow of assets within the protocol contracts. Our analysis shows that this
privileged account needs to be scrutinized. In the following, we use the ClearingHouse contract
as an example and show the representative functions potentially affected by the privileges of the
administrative account.

15/20 PeckShield Audit Report #: 2022-241

https://github.com/Increment-Finance/increment-peckshield/pull/1/commits/612226e

Public

430 function setMinMarginAtCreation(int256 newMinMarginAtCreation) external override
onlyOwner {

431 if (newMinMarginAtCreation <= minMargin) revert
ClearingHouse_InsufficientMinMargin ();

432 if (newMinMarginAtCreation > 5e17) revert ClearingHouse_ExcessiveMinMargin ();
433
434 minMarginAtCreation = newMinMarginAtCreation;
435 emit MinMarginAtCreationChanged(newMinMarginAtCreation);
436 }
437
438 function setLiquidationReward(uint256 newLiquidationReward) external override

onlyOwner {
439 if (newLiquidationReward < 1e16) revert

ClearingHouse_InsufficientLiquidationReward ();
440 if (newLiquidationReward >= minMargin.toUint256 ()) revert

ClearingHouse_ExcessiveLiquidationReward ();
441
442 liquidationReward = newLiquidationReward;
443 emit LiquidationRewardChanged(newLiquidationReward);
444 }
445
446 function setInsuranceRatio(uint256 newInsuranceRatio) external override onlyOwner {
447 if (newInsuranceRatio < 1e17) revert ClearingHouse_InsufficientInsuranceRatio ();
448 if (newInsuranceRatio > 5e17) revert ClearingHouse_ExcessiveInsuranceRatio ();
449
450 insuranceRatio = newInsuranceRatio;
451 emit InsuranceRatioChanged(newInsuranceRatio);
452 }

Listing 3.5: Example Privileged Operations in ClearingHouse

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the owner may also be a counter-party risk to the protocol users. It would
be worrisome if the privileged administrative account is a plain EOA account. Note that a multi-sig
account could greatly alleviate this concern, though it is still far from perfect. Specifically, a better
approach is to eliminate the administration key concern by transferring the role to a community-
governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated as the team confirms the use of a multisig or a Governance

contract in charge of changing these risk parameters and executing these administrative functions.

16/20 PeckShield Audit Report #: 2022-241

Public

3.6 Removal of Redundant State And Code

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [3]

Description

The Increment protocol makes good use of a number of reference contracts, such as ERC20, SafeBEP20
, SafeMath, and Address, to facilitate its code implementation and organization. For example, the
Perpetual smart contract has so far imported at least five reference contracts. However, we observe
the inclusion of certain unused code or the presence of unnecessary redundancies that can be safely
removed.

For example, if we examine closely the Insurance contract, the constructor function has a duplicate
validation on the given _vault (lines 37 and 38). Also, the Perpetual contract has a public function
provideLiquidity(), which updates the liquidity provider’s lp.cumFundingRate twice (lines 367 and
373).

35 constructor(IERC20Metadata _token , IVault _vault) {
36 if (address(_token) == address (0)) revert Insurance_ZeroAddressConstructor (0);
37 if (address(_vault) == address (0)) revert Insurance_ZeroAddressConstructor (1);
38 if (address(_vault) == address (0)) revert Insurance_ZeroAddressConstructor (2);
39 token = _token;
40 vault = _vault;
41 }

Listing 3.6: Insurance::constructor()

Recommendation Consider the removal of the redundant state (or code) with a simplified,
consistent implementation.

Status This issue has been fixed by the following commits: 2d3a78f and f932606.

17/20 PeckShield Audit Report #: 2022-241

https://github.com/Increment-Finance/increment-peckshield/pull/1/commits/2d3a78f
https://github.com/Increment-Finance/increment-peckshield/pull/1/commits/f932606

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Increment protocol, which builds
global exchange rate products on zkSync 2.0 to unleash the power of DeFi for citizens around the
world. In particular, the protocol utilizes pooled virtual assets and Curve V2’s CryptoSwap AMM as the
trading engine to enable multi-currency perpetual swaps such that DeFi users can hedge their USD
exposure or speculate on global currency movements through on-chain perpetual swaps. The current
code base is well structured and neatly organized. Those identified issues are promptly confirmed
and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

18/20 PeckShield Audit Report #: 2022-241

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

19/20 PeckShield Audit Report #: 2022-241

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Public

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2022-241

https://www.peckshield.com

	Introduction
	About Increment
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect Withdrawal Logic in Vault::withdrawPartial()
	Improved Insurance Logic in Insurance::removeInsurance()
	Improved Validation Logic in ClearingHouse::setMinMargin()
	Proper Trading Fee Settlement in _settleLpTradingFees()
	Trust Issue of Admin Keys
	Removal of Redundant State And Code

	Conclusion
	References

